STEP/Forces, Q2 (11/6/23)

(i) A lift of mass 400 kg has a maximum acceleration or deceleration of $1 \mathrm{~ms}^{-2}$, and the lift cable can support a tension of 9000 N . What is the maximum number of people of mass 80 kg that can safely be carried? (Assume $g=10 \mathrm{~ms}^{-2}$.)
(ii) If a single person of mass 80 kg is in the lift when it is accelerating downwards at $1 \mathrm{~ms}^{-2}$, how much lighter does the person feel, compared with their usual weight, as a percentage?

Solution

(i) When the lift is accelerating upwards (or decelerating downwards) at $1 \mathrm{~ms}^{-2}$,
$N 2 L \Rightarrow T-(400+80 n) g=(400+80 n)(1)$
When the lift is accelerating downwards (or decelerating upwards) at $1 \mathrm{~ms}^{-2}$,
$N 2 L \Rightarrow T-(400+80 n) g=(400+80 n)(-1)$
T is greater in the $1^{\text {st }}$ case
When $T=9000,9000=4400+880 n$,
so that $n=\frac{115}{22}$, and hence 5 people can safely be carried
(ii) Let R be the reaction of the lift floor on the person.

Then, considering the forces on the person,
$N 2 L \Rightarrow R-80 g=80(-1)$
$\Rightarrow R=720 N$
Their usual weight is $80 g=800 \mathrm{~N}$, and so there has been a reduction of 10%.

