STEP/Forces, Q1 (11/6/23)

A uniform rod AB lies in equilibrium between two smooth planes inclined at angles α and β to the horizontal, as shown in the diagram, where $\beta>\alpha$, such that the vertical plane containing AB is perpendicular to the line of intersection of the two planes.
(i) Show that the ratio of the reactions at A and B is $\sin \beta: \sin \alpha$
(ii) If AB makes an angle θ to the horizontal, show that
$\tan \theta=\frac{\sin (\beta-\alpha)}{2 \sin \alpha \sin \beta}$

Solution

(i) Taking moments about the centre of mass of $A B$, which is assumed to be of length $2 d$,
rotational equilibrium $\Rightarrow R_{A} \sin \phi_{A} d=R_{B} \sin \phi_{B} d$,
And $\phi_{A}+\theta+\alpha=90^{\circ}$ (the angle that R_{A} makes with OA)
$\& \phi_{B}+\left(180^{\circ}-\left[180^{\circ}-\alpha-\beta\right]-[\alpha+\theta]\right)=90^{\circ}$
(the angle that R_{B} makes with OB),
and so $\phi_{B}-\theta+\beta=90^{\circ}$
Then $\frac{R_{A}}{R_{B}}=\frac{\sin \phi_{B}}{\sin \phi_{A}}=\frac{\cos \left(90^{\circ}-\phi_{B}\right)}{\cos \left(90^{\circ}-\phi_{A}\right)}=\frac{\cos (\beta-\theta)}{\cos (\alpha+\theta)}$
[Instead of resolving in 2 perpendicular directions, we can (if necessary) obtain 2 equations from Lami's theorem:]

As $A B$ is in equilbrium, the triangle of forces can be applied (see diagram, where W is the weight of $A B$). Then, by Lami's theorem:
$\frac{R_{A}}{\sin \gamma_{A}}=\frac{R_{B}}{\sin \gamma_{B}}$
[A similar equation involving W could also be obtained, but this introduces a further unknown (ie W) into the equations.]

Drawing a vertical line through B gives
$\gamma_{A}+90^{\circ}+\left(90^{\circ}-\beta\right)=180^{\circ}$, so that $\gamma_{A}=\beta$
Drawing a vertical line through A gives
$\gamma_{B}+90^{\circ}+\left(90^{\circ}-\alpha\right)=180^{\circ}$, so that $\gamma_{B}=\alpha$
Then, from (2), $\frac{R_{A}}{R_{B}}=\frac{\sin \gamma_{A}}{\sin \gamma_{B}}=\frac{\sin \beta}{\sin \alpha}$, as required.
(ii) From (1), $\frac{\cos (\beta-\theta)}{\cos (\alpha+\theta)}=\frac{\sin \beta}{\sin \alpha}$, so that
$\sin \alpha(\cos \beta \cos \theta+\sin \beta \sin \theta)=\sin \beta(\cos \alpha \cos \theta-\sin \alpha \sin \theta)$
and hence (dividing by $\cos \theta$),
$\sin \alpha \cos \beta+\sin \alpha \sin \beta \tan \theta=\sin \beta \cos \alpha-\sin \beta \sin \alpha \tan \theta$,
so that $\tan \theta(2 \sin \alpha \sin \beta)=\sin \beta \cos \alpha-\sin \alpha \cos \beta$, and $\tan \theta=\frac{\sin (\beta-\alpha)}{2 \sin \alpha \sin \beta}$, as required.

