STEP, Collisions - Q6 (11/6/23)

Ball A of mass m, travelling with speed u on a smooth surface, collides directly with ball B of mass km , which is at rest. The coefficient of restitution between the two balls is e.

Show that the loss of kinetic energy is greatest when $e=0$.

Solution

Let $v_{A} \& v_{B}$ be the final speeds of $A \& B$ in the original direction of A.

By conservation of momentum, $m u=m v_{A}+k m v_{B}$,
so that $u=v_{A}+k v_{B}$
And by Newton's law of restitution, $v_{B}-v_{A}=e u$
Adding these eq'ns then gives $v_{B}=\frac{u(e+1)}{(k+1)}$
and $v_{A}=\frac{u(e+1)}{(k+1)}-e u=\frac{u}{(k+1)}(e+1-e(k+1))=\frac{u(1-e k)}{(k+1)}$
The loss of kinetic energy is $\frac{1}{2} m u^{2}-\frac{1}{2} m v_{A}{ }^{2}-\frac{1}{2} k m v_{B}{ }^{2}$
Thus the loss will be greatest when $u^{2}-v_{A}{ }^{2}-k v_{B}{ }^{2}$
$=u^{2}\left\{1-\frac{(1-e k)^{2}}{(k+1)^{2}}-\frac{k(e+1)^{2}}{(k+1)^{2}}\right\}$ is greatest;
ie when $(k+1)^{2}-(1-e k)^{2}-k(e+1)^{2}$ is greatest,
This expression equals $k^{2}+2 k-e^{2} k^{2}+2 e k-k e^{2}-2 k e-k$
$=k^{2}+k-e^{2} k^{2}-k e^{2}$
$=\left(k^{2}+k\right)\left(1-e^{2}\right)$, which is maximised when $e=0$
[It also shows that no kinetic energy is lost when $e=1$.]

