STEP, Collisions – Q5 (11/6/23)

Ball *A* of mass *m*, travelling with speed *u* on a smooth surface, collides directly with ball *B* of mass *km*, which is at rest. The coefficient of restitution between the two balls is *e*.

(i) With k = 1, what condition must apply to e for ball A to be at rest after the collision?

(ii) For a given *k*, what condition must apply to *e* for ball *A* to reverse its direction after the collision?

Solution

(i) Let $v_A \& v_B$ be the final speeds of A & B in the original direction of A.

By conservation of momentum, $mu = mv_A + mv_B$,

so that $u = v_A + v_B$

And by Newton's law of restitution, $v_B - v_A = eu$

Adding these eq'ns then gives $v_B = \frac{1}{2}u(e+1)$,

and $v_A = u - \frac{1}{2}u(e+1) = \frac{1}{2}u(1-e)$

Ball *A* will be at rest when $v_A = 0$; ie when e = 1.

(ii) The two eq'ns become $u = v_A + kv_B$ and $v_B - v_A = eu$ Adding these eq'ns then gives $v_B = \frac{u(e+1)}{(k+1)}$

and
$$v_A = \frac{u(e+1)}{(k+1)} - eu = \frac{u}{(k+1)} (e+1 - e(k+1)) = \frac{u(1-ek)}{(k+1)}$$

A will thus reverse its direction when 1 - ek < 0; ie when $e > \frac{1}{k}$

[So reversal occurs more readily when *e* is larger, or when *B* has a larger mass. The initial speed of *A* has no effect.]