STEP, Collisions - Q5 (11/6/23)

Ball A of mass m, travelling with speed u on a smooth surface, collides directly with ball B of mass km , which is at rest. The coefficient of restitution between the two balls is e.
(i) With $k=1$, what condition must apply to e for ball A to be at rest after the collision?
(ii) For a given k, what condition must apply to e for ball A to reverse its direction after the collision?

Solution

(i) Let $v_{A} \& v_{B}$ be the final speeds of $A \& B$ in the original direction of A.

By conservation of momentum, $m u=m v_{A}+m v_{B}$,
so that $u=v_{A}+v_{B}$
And by Newton's law of restitution, $v_{B}-v_{A}=e u$
Adding these eq'ns then gives $v_{B}=\frac{1}{2} u(e+1)$,
and $v_{A}=u-\frac{1}{2} u(e+1)=\frac{1}{2} u(1-e)$
Ball A will be at rest when $v_{A}=0$; ie when $e=1$.
(ii) The two eq'ns become $u=v_{A}+k v_{B}$ and $v_{B}-v_{A}=e u$

Adding these eq'ns then gives $v_{B}=\frac{u(e+1)}{(k+1)}$
and $v_{A}=\frac{u(e+1)}{(k+1)}-e u=\frac{u}{(k+1)}(e+1-e(k+1))=\frac{u(1-e k)}{(k+1)}$
A will thus reverse its direction when $1-e k<0$; ie when $e>\frac{1}{k}$
[So reversal occurs more readily when e is larger, or when B has a larger mass. The initial speed of A has no effect.]

