## STEP/Collisions - Q3 (11/6/23)

Particle A of mass $m_{A}$ is travelling with speed $u$ on a smooth surface and collides with particle B of mass $m_{B}$, which is at rest. If the coefficient of restitution between the particles is $e$, find a condition involving $e, m_{A} \& m_{B}$ for A to reverse its direction after the collision.

Solution


Conservation of momentum $\Rightarrow m_{A} u=m_{A} v_{A}+m_{B} v_{B}$, By Newton's Law of Restitution, $v_{B}-v_{A}=e u$

Substituting for $v_{B}$ in the 1 st eq'n,
$m_{A} u=m_{A} v_{A}+m_{B}\left(e u+v_{A}\right)$,
so that $v_{A}\left(m_{A}+m_{B}\right)=u\left(m_{A}-e m_{B}\right)$
and $v_{A}=\frac{u\left(m_{A}-e m_{B}\right)}{m_{A}+m_{B}}$
Then $v_{A}<0 \Rightarrow m_{A}-e m_{B}<0 \Rightarrow e>\frac{m_{A}}{m_{B}}$
[Thus if $m_{A} \geq m_{B}$, a change of direction isn't possible.
If $m_{A}<m_{B}$, a change of direction will be possible provided $e$ is sufficiently big. Note that a bigger $e$ means that A and B bounce off each other more.]

