STEP/Collisions – Q2 (11/6/23)

For two balls colliding directly on a smooth surface, show that kinetic energy is conserved when e = 1.

Solution

Let the two balls have masses $m_A \& m_B$, initial speeds $u_A \& u_B$ and final speeds $v_A \& v_B$ (where the speeds are from left to right, and $u_A > 0$, with $u_A > u_B$).

Then, by conservation of momentum,

$$m_A u_A + m_B u_B = m_A v_A + m_B v_B$$
 (1)
and, by Newton's law of impact, $\frac{v_B - v_A}{u_A - u_B} = e = 1$ (2)
Result to prove: $\frac{1}{2}m_A(v_A{}^2 - u_A{}^2) + \frac{1}{2}m_B(v_B{}^2 - u_B{}^2) = 0$ (3)
From (1), $m_B(v_B - u_B) = m_A(u_A - v_A)$,
and from (2), $(v_B + u_B) = (u_A + v_A)$.
Then, substituting into (3),

$$LHS = \frac{1}{2}m_A(v_A - u_A)(v_A + u_A) + \frac{1}{2}m_B(v_B - u_B)(v_B + u_B)$$
$$= \frac{1}{2}m_A(v_A - u_A)(v_A + u_A) + \frac{1}{2}m_A(u_A - v_A)(u_A + v_A) = 0,$$

as required.