## STEP/Collisions, Q1 (11/6/23)

Two particles of the same mass are travelling directly towards each other, on a smooth surface. Particle A has a speed which is $\theta$ times that of particle B (where $\theta>0$ ). The coefficient of restitution between A and B is $e$.
(i) Find the condition on $\theta$ that must apply in order for A to change direction on impact. Also give the condition on $e$.
(ii) Describe the motion of the particles after they have collided, in the case where $e=0$.
(iii) Describe the motion of the particles after they have collided, in the case where $e=1$.
(iv) In the case where $e=\frac{1}{3}$, describe the motion of the particles after they have collided, for the various possible values of $\theta$.

Solution


Conservation of momentum $\Rightarrow m(\theta u-u)=m(v+w)$, where $m$ is the mass of each particle, so that $(\theta-1) u=v+w$ (1)

By Newton's Law of Restitution, $w-v=e(\theta u-(-u))$,
so that $e u(\theta+1)=w-v(2)$
Adding (1) \& (2), $u(\theta-1+e \theta+e)=2 w$
Subtracting (2) from (1), $u(\theta-1-e \theta-e)=2 v$
(i) From (4), $v<0 \Rightarrow \theta-1-e \theta-e<0($ as $u>0)$
$\Rightarrow \theta(1-e)<e+1$
$\Rightarrow \theta<\frac{1+e}{1-e}$, provided $e \neq 1$ (as $\left.1-e>0\right)$
[If $e$ is close enough to 1 , A will reverse its direction for any value of $\theta$ (the bigger $\theta$ is, the closer $e$ has to be to 1 ).]
Also $\theta-1-e \theta-e<0 \Rightarrow \theta-1<e(\theta+1) \Rightarrow e>\frac{\theta-1}{\theta+1}$
(ii) When $e=0$, (4) \& (3) $\Rightarrow v=w=\frac{(\theta-1) u}{2}$

Thus the particles coalesce, and travel in the original direction of the particle with the bigger speed.
(iii) When $e=1$, (4) \& (3) $\Rightarrow v=-u$ and $w=\theta u$

Thus both A and B have reversed their directions, and exchanged speeds.
(iv) When $e=\frac{1}{3}$, (4) \& (3) $\Rightarrow v=\frac{u}{2}\left(\frac{2}{3} \theta-\frac{4}{3}\right)$ and $w=\frac{u}{2}\left(\frac{4}{3} \theta-\frac{2}{3}\right)$
$v<0$ when $\frac{2}{3} \theta-\frac{4}{3}<0$; ie $\theta<2$
$w<0$ when $\frac{4}{3} \theta-\frac{2}{3}<0$; ie $\theta<\frac{1}{2}$
So, when $\theta<\frac{1}{2}$, both A and B move off to the left (in the diagram).
When $\theta=\frac{1}{2}$, A moves off to the left, and $B$ comes to rest.
When $\frac{1}{2}<\theta<2$, A moves off to the left and B moves off to the right.
When $\theta=2$, A comes to rest, and B moves off to the right.
When $\theta>2$, both A and B move off to the right.

