STEP Exercises - Inequalities (sol'ns) (6 pages; 6/10/19)

(1) Are the following true or false?

(i)
$$a < b \Rightarrow \frac{1}{a} > \frac{1}{b}$$

(ii)
$$a < b \Rightarrow a^2 < b^2$$

(iii)
$$a < b \& c < d \Rightarrow a + c < b + d$$

(iv)
$$a < b \& c < d \Rightarrow a - c < b - d$$

Solution

- (i) Not true if a < 0 & b > 0 (consider the graph of y = 1/x)
- (ii) Not true if a < 0 & b < 0 or

if a < 0, b > 0 & |b| < |a| (consider the graph of $y = x^2$)

(iii) True:
$$a < b \Rightarrow a + c < b + c < b + d$$

(iv) False: For example, 8 < 9 and 2 < 4, but it is not true that 8 - 2 < 9 - 4; see diagram

(2) Prove or provide a counter-example for the conjecture $x > a \& y > b \Rightarrow xy > ab \quad (a, b \ real)$ in each of the following cases:

(i)
$$a > 0, b > 0$$
 (ii) $a < 0, b < 0$ (iii) $a > 0, b < 0$

Solution

(i)
$$x > a \Rightarrow xy > ay$$
 [as $y > 0$] $> ab$ [since $y > b \Rightarrow ay > ab$] so true

[or refer to graph of y = ab]

(b)
$$a < 0, b < 0$$

counter-example: x = 0

(c)
$$a > 0, b < 0$$

consider graph of xy = ab when a = 3, b = -2 (see below)

(counter-example: $x = 4 + \delta$, $y = -2 + \delta$)

(3) Prove that a + b < 1 + ab if a > 1 and b > 1

Solution

$$\Leftrightarrow a + b - 1 - ab < 0$$

$$\Leftrightarrow a(1-b) - (1-b) < 0$$

$$\Leftrightarrow$$
 $(a-1)(1-b) < 0$

(4) Prove that $\frac{a}{b} < \frac{a+c}{b+c}$ where $a, b, c > 0 \Leftrightarrow a < b$

Proof

$$\frac{a}{b} < \frac{a+c}{b+c} \Leftrightarrow a(b+c) < b(a+c)$$

$$\Leftrightarrow ac < bc \Leftrightarrow a < b$$

- (5) Let x, y & z be positive real numbers.
- (i) If $x + y \ge 2$, is it necessarily true that $\frac{1}{x} + \frac{1}{y} \le 2$?
- (ii) If $x + y \le 2$, is it necessarily true that $\frac{1}{x} + \frac{1}{y} \ge 2$?

Solution

- (i) No: if x (say) is very small, then $\frac{1}{x}$ will be very large.
- (ii) Note that, when $x = y = 1, \frac{1}{x} + \frac{1}{y} = 2$

Also, if the result is true for x + y = 2, then if x or y is made smaller, so that x + y < 2, $\frac{1}{x} + \frac{1}{y}$ becomes larger, so that the result is still true. So, WLOG (without loss of generality), we need only investigate the case where x + y = 2.

[This is an example of "reformulating the problem".]

Experimenting with some numbers, we get the impression that $\frac{1}{x} + \frac{1}{y} \ge 2$. So, aiming for a proof by contradiction, suppose that $\frac{1}{x} + \frac{1}{y} < 2$

Then,
$$\frac{x+y}{xy} < 2$$
, so that $2 < 2x(2-x)$ [as $xy > 0$]

and hence $1 < 2x - x^2$ and $x^2 - 2x + 1 < 0$ or $(x - 1)^2 < 0$, which is impossible.

Thus
$$\frac{1}{x} + \frac{1}{y} \ge 2$$
 when $x + y \le 2$

Alternative approach

To prove that
$$\frac{1}{x} + \frac{1}{y} \ge 2$$
 when $x + y = 2$,

we note that WLOG we need only consider solutions of the form $x = 1 + \delta$, $y = 1 - \delta$ (where $\delta > 0$).

But the reduction from $\frac{1}{1}$ to $\frac{1}{1+\delta}$ will be outweighed by the rise from $\frac{1}{1}$ to $\frac{1}{1-\delta}$ [consider the extreme cases $\frac{1}{1000}$ to $\frac{1}{1001}$ versus $\frac{1}{4}$ to $\frac{1}{3}$, which shows that the change of 1 in the denominator has a greater effect when the denominator is smaller, as it is with $1-\delta$, compared to $1+\delta$]

(6) Assuming that $sin^2\theta + cos^2\theta = 1$, but without using any compound angle results, show that $sin\theta cos\theta \le \frac{1}{2}$

Solution

$$(\sin\theta - \cos\theta)^2 \ge 0 \Rightarrow \sin^2\theta + \cos^2\theta - 2\sin\theta\cos\theta \ge 0$$

 $\Rightarrow 1 \ge 2\sin\theta\cos\theta \Rightarrow \sin\theta\cos\theta \le \frac{1}{2}$

(7) Which is larger: $\frac{\sqrt{7}}{2}$ or $\frac{1+\sqrt{6}}{3}$ (without using a calculator)?

Solution

Considering the difference of squares:

$$\frac{7}{4} - \frac{(1+2\sqrt{6}+6)}{9} = \frac{63-28-8\sqrt{6}}{36} > \frac{35-8(3)}{36} > 0$$
; so $\frac{\sqrt{7}}{2}$ is larger

[Another approach is to investigate $\frac{\binom{7}{4}}{\binom{7+2\sqrt{6}}{9}} = \frac{63(7-2\sqrt{6})}{4(49-24)} =$

 $\frac{63(7-2\sqrt{6})}{100}$, but it isn't as easy to show that this expression is greater than 1]

(8) Is
$$\frac{6}{7} < \frac{2}{\sqrt{5}}$$
?

Solution

$$\frac{6}{7} < \frac{2}{\sqrt{5}} \Leftrightarrow \frac{36}{49} < \frac{4}{5}$$

$$49 \times 0.8 = \frac{1}{10}(320 + 72) = 39.2 > 36$$

So
$$\frac{36}{49} < \frac{39.2}{49} = 0.8 = \frac{4}{5}$$

Answer is Yes.

(9) Show that $e^3 > 4e^{\frac{3}{2}}$

Solution

An equivalent result to prove is $e^{\frac{3}{2}} > 4$ (dividing both sides by $e^{\frac{3}{2}}$, which is positive) [you can never be sure what counts as being obvious]

 $\Leftrightarrow e^3 > 16$ (as the function $y = x^2$ is increasing for x > 0)

$$e^3 > (2 + 0.7)^3 > 2^3 + 3(2^2)(0.7) = 8 + 8.4 > 16,$$

so that the original result is also true

(10) Is
$$log_2 3 > \frac{3}{2}$$
?

Solution

 $log_2 3 > \frac{3}{2} \Leftrightarrow 3 > 2^{\frac{3}{2}}$ (as $y = 2^x$ is an increasing function)

$$\Leftrightarrow 3^2 > 2^3$$

So answer is Yes.

(11) Use differentiation to show that $\ln x \ge 1 - \frac{1}{x}$ for x > 0

Solution

$$\frac{d}{dx}(lnx) = \frac{1}{x}$$
 and $\frac{d}{dx}\left(1 - \frac{1}{x}\right) = \frac{1}{x^2}$

For 0 < x < 1, $\frac{1}{x} < \frac{1}{x^2}$; ie $1 - \frac{1}{x}$ is increasing faster than lnx

For
$$x > 1$$
, $\frac{1}{x} > \frac{1}{x^2}$; ie lnx is increasing faster than $1 - \frac{1}{x}$

[as can be seen from a sketch of the two curves]

When
$$x = 1$$
, $lnx = 0$ and $1 - \frac{1}{x} = 0$.

Thus, for 0 < x < 1, $1 - \frac{1}{x}$ is catching up with lnx, and for x > 1, lnx moves away from $1 - \frac{1}{x}$, and hence $lnx \ge 1 - \frac{1}{x}$ for x > 0.