## STEP/Differentiation Q6 (15/6/23)

Find the turning points of  $y = (x^2 - 4x + 3)^2$ , and hence sketch the curve.

## Solution

## Method 1

As 
$$x^2 - 4x + 3 = (x - 1)(x - 3)$$
,  
 $y = (x - 1)^2(x - 3)^2$   
Then  $\frac{dy}{dx} = 2(x - 1)(x - 3)^2 + (x - 1)^2(2)(x - 3)$   
 $= 2(x - 1)(x - 3)(x - 3 + x - 1)$   
 $= 4(x - 1)(x - 3)(x - 2)$   
 $\frac{dy}{dx} = 0$  when  $x = 1, 2 \& 3$   
At  $x = 1, \frac{dy}{dx}$  changes from -ve to +ve, indicating a min. point.  
At  $x = 2, \frac{dy}{dx}$  changes from +ve to -ve, indicating a max. point.  
At  $x = 3, \frac{dy}{dx}$  changes from -ve to +ve, indicating a min. point.  
The min. points are therefore (1, 0) and (3, 0), whilst the max. is at (2,1).



## Method 2

 $(x^2 - 4x + 3)^2 \ge 0$  and  $(x^2 - 4x + 3)^2 = (x - 1)^2(x - 3)^2 = 0$ has roots at x = 1 & 3, so that there are minima at these two points.

For x = 1 - t,  $y = x^2 - 4x + 3$  and hence  $y = (x^2 - 4x + 3)^2$  increases as t increases, and similarly for x = 3 + t.

For 1 < x < 3,  $y = (x^2 - 4x + 3)^2$  attains a max. when  $x^2 - 4x + 3$  (which is negative in this range) is at a min. ; ie when

$$x = 2.$$