STEP/Differential Equations Q2 (15/6/23)

To convert
$$x^2 \frac{d^2 y}{dx^2} + ax \frac{dy}{dx} + by = 0$$

to $\frac{d^2 y}{du^2} + c \frac{dy}{du} + dy = 0$ (*)

Which of the following substitutions works: $u = e^x$ or $x = e^u$?

fmng.uk

Solution

 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ Now, $u = e^x \Rightarrow \frac{du}{dx} = u$, and $x = e^u \Rightarrow \frac{du}{dx} = \frac{1}{\left(\frac{dx}{du}\right)} = \frac{1}{x}$ In the latter case, $\frac{dy}{dx} = \frac{dy}{du}\left(\frac{1}{x}\right)$, and $x\frac{dy}{dx} = \frac{dy}{du}$ Then $\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{du}\left(\frac{1}{x}\right)\right) = \left(\frac{d^2y}{du^2} \cdot \frac{du}{dx}\right)\left(\frac{1}{x}\right) + \frac{dy}{du}\left(-\frac{1}{x^2}\right)$ $= \frac{1}{x^2}\left(\frac{d^2y}{du^2} - \frac{dy}{du}\right)$ So $x^2\frac{d^2y}{dx^2} + ax\frac{dy}{dx} + by = 0$ becomes $\left(\frac{d^2y}{du^2} - \frac{dy}{du}\right) + a\frac{dy}{du} + by = 0$ ie $\frac{d^2y}{du^2} + (a - 1)\frac{dy}{du} + by = 0$