STEP/Curve Sketching Q6 (17/6/23)

Sketch $y = \frac{e^x}{x}$

Solution

Vertical asymptote at x = 0

When $x = \delta$ (where δ is a small positive number), y > 0;

and when $x = -\delta$, y < 0.

Existence of horizontal asymptote

As $x \to \infty$, $y \to \infty$, and as $x \to -\infty$, $y \to 0^-$

Stationary points

 $\frac{dy}{dx} = \frac{xe^x - e^x}{x^2} = e^x \frac{(x-1)}{x^2}$

So there is a stationary point at x = 1, when y = e.

 $\frac{d^2y}{dx^2} = e^x \frac{(x-1)}{x^2} + e^x (-x^{-2} + 2x^{-3}) = e^x \frac{(x^2 - 2x + 2)}{x^3}$

When x = 1, $\frac{d^2y}{dx^2} > 0$, so that there is a minimum at (1, e).

Gradient

Also, $x^2 - 2x + 2 = (x - 1)^2 + 1 > 0$, so that $\frac{d^2y}{dx^2} > 0$ (ie increasing gradient) for x > 0, and $\frac{d^2y}{dx^2} < 0$ for x < 0

fmng.uk

