STEP/Curve Sketching Q6 (17/6/23)

Sketch $y=\frac{e^{x}}{x}$

Solution

Vertical asymptote at $x=0$

When $x=\delta$ (where δ is a small positive number), $y>0$; and when $x=-\delta, y<0$.

Existence of horizontal asymptote
As $x \rightarrow \infty, y \rightarrow \infty$, and as $x \rightarrow-\infty, y \rightarrow 0^{-}$

Stationary points

$\frac{d y}{d x}=\frac{x e^{x}-e^{x}}{x^{2}}=e^{x} \frac{(x-1)}{x^{2}}$
So there is a stationary point at $x=1$, when $y=e$.
$\frac{d^{2} y}{d x^{2}}=e^{x} \frac{(x-1)}{x^{2}}+e^{x}\left(-x^{-2}+2 x^{-3}\right)=e^{x} \frac{\left(x^{2}-2 x+2\right)}{x^{3}}$
When $x=1, \frac{d^{2} y}{d x^{2}}>0$, so that there is a minimum at $(1, e)$.

Gradient

Also, $x^{2}-2 x+2=(x-1)^{2}+1>0$, so that $\frac{d^{2} y}{d x^{2}}>0$ (ie increasing gradient) for $x>0$, and $\frac{d^{2} y}{d x^{2}}<0$ for $x<0$

