STEP/Curve Sketching Q4 (14/6/23)

Sketch $x^n \pm y^n = 1$ for large n

Solution

Consider odd and even *n* separately.

(i) $x^n - y^n = 1$; odd *n*

For large positive $x \& y, y^n = x^n - 1$, so that $y \approx x$; ie y = x is an asymptote. Also for large negative x & y.

Negative *x* with positive *y* is not possible.

Positive *x* with negative *y* is only possible if both |x| & |y| are < 1.

Curve passes through (0, -1) and (1, 0).

When |x| < 1, x^n can be made as small as we like, by making n large enough. Then $x^n - y^n = 1 \Rightarrow y \to -1$ as $n \to \infty$.

Similarly, for |y| < 1, $x \to 1$ as $n \to \infty$.

For x > 1, x^n can be made as large as we like, by making n large enough. Then $x^n - y^n = 1 \Rightarrow y \rightarrow x$ as $n \rightarrow \infty$.

For x < -1, x^n can be made as large and negative as we like (as n is odd), by making n large enough. Then $x^n - y^n = 1 \Rightarrow y \rightarrow x$ as $n \rightarrow \infty$.

Finally, $x = -1 \Rightarrow y^n = -2 \Rightarrow y \to -1$ as $n \to \infty$.

(ii) $x^n + y^n = 1$; odd *n*

similar reasoning can be applied

(iii) $x^n + y^n = 1$; even *n*

Curve has symmetry about the *y*-axis (replacing *x* with -x) and about the *x*-axis (replacing *y* with -y).

As *n* is even, $x^n + y^n = 1$ has no solution for |x| > 1 or |y| > 1.

Curve passes through (0, 1), (0, -1), (1, 0) & (-1, 0).

When |x| < 1, x^n can be made as small as we like, by making n large enough. Then $x^n + y^n = 1 \Rightarrow y \to \pm 1$ as $n \to \infty$.

Similarly, for |y| < 1, $x \to \pm 1$ as $n \to \infty$.

[This is a straightened out version of the circle $x^2 + y^2 = 1$]

(iv) $x^n - y^n = 1$; even n

Once again, the curve has symmetry about the *x* and *y*-axes.

For large |x| & |y|, $y^n = x^n - 1 \Rightarrow y \approx \pm x$; ie $y = \pm x$ are asymptotes.

Curve passes through (1, 0) and (-1, 0), but doesn't cross the *y*-axis.

When |x| < 1, x^n can be made as small as we like, by making n large enough. Then $x^n - y^n = 1 \Rightarrow$ no solution.

Similarly, for |y| < 1, $x \to 1$ as $n \to \infty$.

For x > 1, x^n can be made as large as we like, by making n large enough. Then $x^n - y^n = 1 \Rightarrow y \to x$ as $n \to \infty$.

[This is a straightened out version of the rectangular hyperbola $x^2 - y^2 = 1$]