STEP/Curve Sketching Q4 (14/6/23)

Sketch $x^{n} \pm y^{n}=1$ for large n

Solution

Consider odd and even n separately.
(i) $x^{n}-y^{n}=1$; odd n

For large positive $x \& y, y^{n}=x^{n}-1$, so that $y \approx x$; ie $y=x$ is an asymptote. Also for large negative $x \& y$.

Negative x with positive y is not possible.
Positive x with negative y is only possible if both $|x| \&|y|$ are <1.
Curve passes through $(0,-1)$ and $(1,0)$.
When $|x|<1, x^{n}$ can be made as small as we like, by making n large enough. Then $x^{n}-y^{n}=1 \Rightarrow y \rightarrow-1$ as $n \rightarrow \infty$.

Similarly, for $|y|<1, x \rightarrow 1$ as $n \rightarrow \infty$.
For $x>1, x^{n}$ can be made as large as we like, by making n large enough. Then $x^{n}-y^{n}=1 \Rightarrow y \rightarrow x$ as $n \rightarrow \infty$.

For $x<-1, x^{n}$ can be made as large and negative as we like (as n is odd), by making n large enough. Then $x^{n}-y^{n}=1 \Rightarrow y \rightarrow x$ as $n \rightarrow \infty$.

Finally, $x=-1 \Rightarrow y^{n}=-2 \Rightarrow y \rightarrow-1$ as $n \rightarrow \infty$.

(ii) $x^{n}+y^{n}=1$; odd n
similar reasoning can be applied

(iii) $x^{n}+y^{n}=1$; even n

Curve has symmetry about the y-axis (replacing x with $-x$) and about the x-axis (replacing y with $-y$).

As n is even, $x^{n}+y^{n}=1$ has no solution for $|x|>1$ or $|y|>1$.
Curve passes through $(0,1),(0,-1),(1,0) \&(-1,0)$.

When $|x|<1, x^{n}$ can be made as small as we like, by making n large enough. Then $x^{n}+y^{n}=1 \Rightarrow y \rightarrow \pm 1$ as $n \rightarrow \infty$.

Similarly, for $|y|<1, x \rightarrow \pm 1$ as $n \rightarrow \infty$.

[This is a straightened out version of the circle $x^{2}+y^{2}=1$]
(iv) $x^{n}-y^{n}=1$; even n

Once again, the curve has symmetry about the x and y-axes.

For large $|x| \&|y|, y^{n}=x^{n}-1 \Rightarrow y \approx \pm x$; ie $y= \pm x$ are asymptotes.

Curve passes through $(1,0)$ and $(-1,0)$, but doesn't cross the y-axis.

When $|x|<1, x^{n}$ can be made as small as we like, by making n large enough. Then $x^{n}-y^{n}=1 \Rightarrow$ no solution.

Similarly, for $|y|<1, x \rightarrow 1$ as $n \rightarrow \infty$.
For $x>1, x^{n}$ can be made as large as we like, by making n large enough. Then $x^{n}-y^{n}=1 \Rightarrow y \rightarrow x$ as $n \rightarrow \infty$.

[This is a straightened out version of the rectangular hyperbola $\left.x^{2}-y^{2}=1\right]$

