STEP/Curve Sketching Q3 (14/6/23)

Sketch the following:

(i)
$$y = ln (1 - x)$$

(ii) $y = ln(x^2 - 1)$
(iii) $y = ln|x^2 - 1|$

Solution

(i)
$$y = \ln (1 - x)$$
 is the reflection in $x = \frac{1}{2}$ of $y = lnx$

 $[y = lnx \rightarrow y = ln(-x)$ is a reflection in the *y*-axis (note that the domain changes to negative *x*); then $ln(-x) \rightarrow ln(-[x-1]) = ln(1-x)$ is a translation of 1 to the right, which can be seen to be a reflection in $x = \frac{1}{2}$; also, compare with $y = sin(\pi - x)$, which is the reflection in $x = \frac{\pi}{2}$ of y = sinx]

 $y = \ln\left(1 - x\right)$

(ii) $y = \ln(x^2 - 1)$ is an even function; ie it's symmetric about the y-axis. It is undefined for $-1 \le x \le 1$

The right-hand branch can be obtained from $y = \ln(x - 1)$: For x > 1, $y = f(x^2)$ will be a compressed version of y = f(x), with equality as $x \to 1$ [eg to obtain the point $(2, f(2^2))$, we start at

(2,0) on the *x*-axis, then look to the right to obtain $(2^2, 0)$, then up to the curve y = f(x), to find the point $(2^2, f(2^2))$, which we drag to the left, to give $(2, f(2^2))$; thus the process is similar to a stretch of scale factor k, to obtain y = f(kx) from y = f(x), where k > 1 (though with equality when x = 1, rather than

$$x = 0).]$$

 $y = \ln(x - 1) \& y = \ln(x^2 - 1)$

(iii) $y = ln|x^2 - 1|$ For |x| > 1, $ln|x^2 - 1| = ln(x^2 - 1)$ For x = 1, $ln|x^2 - 1|$ is undefined For |x| < 1, $ln|x^2 - 1| = ln(1 - x^2)$ $y = ln(1 - x^2)$ is an even function; ie it's symmetric about the y-axis. We need therefore only consider the curve for $0 \le x < 1$. For $0 \le x < 1$, $y = ln(1 - x^2)$ will be similar to y = ln(1 - x). For $x = \frac{1}{2}$, for example, the *y*-coordinate will be $ln(1 - \frac{1}{4})$; ie we are looking to the left (to obtain $x = \frac{1}{4}$), and dragging the graph of

fmng.uk

y = ln(1 - x) back to the right. Thus $y = ln(1 - x^2)$ hugs the line x = 1 (and also y = 0) more than y = ln(1 - x).

[Compare with the graphs $y = x^2$ and $y = x^4$, where the latter is 'squarer'.]

$$y = ln|x^2 - 1|$$