STEP/Curve Sketching Q3 (14/6/23)

Sketch the following:
(i) $y=\ln (1-x)$
(ii) $y=\ln \left(x^{2}-1\right)$
(iii) $y=\ln \left|x^{2}-1\right|$

Solution
(i) $y=\ln (1-x)$ is the reflection in $x=\frac{1}{2}$ of $y=\ln x$
$[y=\ln x \rightarrow y=\ln (-x)$ is a reflection in the y-axis (note that the domain changes to negative x); then $\ln (-x) \rightarrow \ln (-[x-1])=$ $\ln (1-x)$ is a translation of 1 to the right, which can be seen to be a reflection in $x=\frac{1}{2}$; also, compare with $y=\sin (\pi-x)$, which is the reflection in $x=\frac{\pi}{2}$ of $\left.y=\sin x\right]$

$y=\ln (1-x)$
(ii) $y=\ln \left(x^{2}-1\right)$ is an even function; ie it's symmetric about the y-axis. It is undefined for $-1 \leq x \leq 1$

The right-hand branch can be obtained from $y=\ln (x-1)$: For $x>1, y=f\left(x^{2}\right)$ will be a compressed version of $y=f(x)$, with equality as $x \rightarrow 1$ [eg to obtain the point ($2, f\left(2^{2}\right)$), we start at
$(2,0)$ on the x-axis, then look to the right to obtain $\left(2^{2}, 0\right)$, then up to the curve $y=f(x)$, to find the point $\left(2^{2}, f\left(2^{2}\right)\right)$, which we drag to the left, to give $\left(2, f\left(2^{2}\right)\right)$; thus the process is similar to a stretch of scale factor k, to obtain $y=f(k x)$ from $y=f(x)$, where $k>1$ (though with equality when $x=1$, rather than $x=0)$.]

$$
y=\ln (x-1) \& y=\ln \left(x^{2}-1\right)
$$

(iii) $y=\ln \left|x^{2}-1\right|$

For $|x|>1, \ln \left|x^{2}-1\right|=\ln \left(x^{2}-1\right)$
For $x=1, \ln \left|x^{2}-1\right|$ is undefined
For $|x|<1, \ln \left|x^{2}-1\right|=\ln \left(1-x^{2}\right)$
$y=\ln \left(1-x^{2}\right)$ is an even function; ie it's symmetric about the y-axis. We need therefore only consider the curve for $0 \leq x<1$.

For $0 \leq x<1, y=\ln \left(1-x^{2}\right)$ will be similar to $y=\ln (1-x)$. For $x=\frac{1}{2}$, for example, the y-coordinate will be $\ln \left(1-\frac{1}{4}\right)$; ie we are looking to the left (to obtain $x=\frac{1}{4}$), and dragging the graph of $y=\ln (1-x)$ back to the right. Thus $y=\ln \left(1-x^{2}\right)$ hugs the line $x=1$ (and also $y=0$) more than $y=\ln (1-x)$.
[Compare with the graphs $y=x^{2}$ and $y=x^{4}$, where the latter is 'squarer'.]

$$
y=\ln \left|x^{2}-1\right|
$$

