
STEP/Curve Sketching Q2 (14/6/23)

Sketch (i) $y = \sqrt{\sin x}$ and (ii) $y = (\sin x)^{\frac{1}{n}}$ for large positive integer n (for $0 \le x \le \pi$ in both cases).

Solution

(i) Note that, for 0 < y < 1, $\sqrt{y} > y$

So, for $y = \sqrt{sinx}$, the graph will hug the y - axis more than for y = sinx.

Also, if
$$f(x) = \sqrt{\sin x}$$
, $f'(x) = \frac{1}{2}(\sin x)^{-\frac{1}{2}}\cos x$,

so that $f'(0) = \infty$ (strictly speaking, it is 'undefined');

ie the graph is vertical at x = 0 (and also $x = \pi$, by symmetry).

(ii) The effect is greater for larger n, and the graph tends to a rectangular shape.