STEP/Counting Q8 (11/6/23)

A 4-digit password is made up of numbers from 0 to 4 , where the numbers can be repeated, but have to be ordered from largest to smallest. Show that there are 70 possible passwords.

Solution

Consider a simpler version of the problem, with just 3 numbers, each of which can be 0,1 or 2

Then the following are possible:
$222,221,220,211,210,200$
$111,110,100$
000
It may be possible to come up with a recurrence relation of some sort. Let $f(m, n)$ be the number of possibilities when we can choose between $0,1, \ldots, m$ for each digit, and there are n digits in the password.

From the above, we have $f(2,3)=f(2,2)+f(1,2)+f(0,2)$ and this can be generalised to
$f(m, n)=f(m, n-1)+f(m-1, n-1)+\cdots+f(0, n-1)$
We also note that $f(m, 1)=m+1$
Applying this to the problem in question,

$$
\begin{aligned}
& f(4,4)=f(4,3)+f(3,3)+f(2,3)+f(1,3)+f(0,3) \\
& =[f(4,2)+f(3,2)+\cdots+f(0,2)] \\
& +[f(3,2)+f(2,2)+\cdots+f(0,2)] \\
& +\cdots+f(0,2) \\
& =f(4,2)+2 f(3,2)+3 f(2,2)+\cdots+5 f(0,2) \\
& =[f(4,1)+f(3,1)+\cdots+f(0,1)] \\
& +2[f(3,1)+f(2,1)+\cdots+f(0,1)] \\
& +\cdots 5 f(0,1)
\end{aligned}
$$

$=f(4,1)+(1+2) f(3,1)+(1+2+3) f(2,1)$
$+(1+2+3+4) f(1,1)+(1+2+3+4+5) f(0,1)$
$=5+3(4)+6(3)+10(2)+15(1)$
$=5+12+18+20+15=70$
[This method can be applied to the original BMO problem, though it would become unwieldy if the length of the password exceeded 6 digits.]

Alternative (quicker) method [based on the official solutions,
contained in "A Mathematical Olympiad Primer" by Geoff Smith]:
Each possibility can be represented using the following system:
3220 is represented by DXDXXDDX
and 4311 is represented by $X D X D D X X D$
For 3220 , the 1 st letter D means that we are dropping by 1 from the maximum of 4 , and the 2 nd letter X means that we have reached the value of the 1st digit; similarly the next 2 letters DX mean that we are dropping by another 1 to arrive at the 2nd digit; the 5th letter X means that we don't drop at all to arrive at the 3rd digit; the final letters DDX mean that we drop by 2 to arrive at the last digit.

For 4311, we need a D on the end to get down to 0 .
In all cases there will be 4 Ds and 4 Xs , and the Ds and Xs can appear in any of the places, so that the number of possibilities is $\binom{8}{4}=70$.
[See the official solutions for a couple of other approaches.]

