STEP/Counting Q5 (11/6/23)

2 boys and 3 girls are to sit in a row. How many arrangements are there in which the 2 boys are not next to each and the 3 girls are also not next to each other?

Solution

A Venn diagram could be created to illustrate the various possibilities.

Let B denote the cases where the boys are together, and G the cases where the girls are together. There are then 4 regions in the Venn diagram, as shown below.

We are interested in region (4).
The total number of ways of arranging the 5 children is $5!=120$. This is $(1)+(2)+(3)+(4)$.

To find (3), where the boys are together and also the girls: Let M denote the block of boys, and F the block of girls [to avoid confusion with the B and G already used in the Venn diagram].

We can then have either MF or FM. Multiplying this figure of 2 by $2!3$! in order to allow for the arrangements of the boys within M etc, gives $(3)=24$.

To find $B=(1)+(3)$: consider the number of arrangements of $M F_{1} F_{2} F_{3}$

This gives 4 ! (ways of arranging these 4 items) $\times 2$! (ways of arrangements the boys within their block); ie $B=(1)+(3)=48$

Similarly, $G=(2)+(3)=$ number of arrangements of $F M_{1} M_{2}=$ $3!3!=36$

To summarise so far,
$(1)+(2)+(3)+(4)=120$
$(3)=24$
$(1)+(3)=48$
$(2)+(3)=36$

Hence $(1)=24,(2)=12$ and $(4)=120-24-12-24=60$
[We could also list the possible arrangements in the situation where the boys and girls are taken to be indistinguishable, and multiply by $2!3!=12$ in each case (the number of ways of arranging the boys and girls for each of these possibilities).

Labelling each with the appropriate region from the Venn diagram:

MMFFF
MFMFF
MFFMF (4)
MFFFM (2)
FMMFF(1)

FMFMF
FMFFM
FFMMF
FFMFM
FFFMM

This gives $(1)=2,(2)=1,(3)=2,(4)=5$
And multiplying each by 12 gives the figures arrived at previously.]

