Section A: Pure Mathematics

1 The points S, T, U and V have coordinates $(s, m s),(t, m t),(u, n u)$ and $(v, n v)$, respectively. The lines $S V$ and $U T$ meet the line $y=0$ at the points with coordinates $(p, 0)$ and $(q, 0)$, respectively. Show that

$$
p=\frac{(m-n) s v}{m s-n v},
$$

and write down a similar expression for q.
Given that S and T lie on the circle $x^{2}+(y-c)^{2}=r^{2}$, find a quadratic equation satisfied by s and by t, and hence determine $s t$ and $s+t$ in terms of m, c and r.

Given that S, T, U and V lie on the above circle, show that $p+q=0$.

2 (i) Let $y=\sum_{n=0}^{\infty} a_{n} x^{n}$, where the coefficients a_{n} are independent of x and are such that this series and all others in this question converge. Show that

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1},
$$

and write down a similar expression for $y^{\prime \prime}$.
Write out explicitly each of the three series as far as the term containing a_{3}.
(ii) It is given that y satisfies the differential equation

$$
x y^{\prime \prime}-y^{\prime}+4 x^{3} y=0 .
$$

By substituting the series of part (i) into the differential equation and comparing coefficients, show that $a_{1}=0$.
Show that, for $n \geqslant 4$,

$$
a_{n}=-\frac{4}{n(n-2)} a_{n-4},
$$

and that, if $a_{0}=1$ and $a_{2}=0$, then $y=\cos \left(x^{2}\right)$.
Find the corresponding result when $a_{0}=0$ and $a_{2}=1$.

3 The function $\mathrm{f}(t)$ is defined, for $t \neq 0$, by

$$
\mathrm{f}(t)=\frac{t}{\mathrm{e}^{t}-1}
$$

(i) By expanding e^{t}, show that $\lim _{t \rightarrow 0} f(t)=1$. Find $f^{\prime}(t)$ and evaluate $\lim _{t \rightarrow 0} f^{\prime}(t)$.
(ii) Show that $\mathrm{f}(t)+\frac{1}{2} t$ is an even function. [Note: A function $\mathrm{g}(t)$ is said to be even if $\mathrm{g}(t) \equiv \mathrm{g}(-t)$.
(iii) Show with the aid of a sketch that $\mathrm{e}^{t}(1-t) \leqslant 1$ and deduce that $\mathrm{f}^{\prime}(t) \neq 0$ for $t \neq 0$.

Sketch the graph of $f(t)$.

4 For any given (suitable) function f, the Laplace transform of f is the function F defined by

$$
\mathrm{F}(s)=\int_{0}^{\infty} \mathrm{e}^{-s t} \mathrm{f}(t) \mathrm{d} t \quad(s>0) .
$$

(i) Show that the Laplace transform of $\mathrm{e}^{-b t} \mathrm{f}(t)$, where $b>0$, is $\mathrm{F}(s+b)$.
(ii) Show that the Laplace transform of $\mathrm{f}(a t)$, where $a>0$, is $a^{-1} \mathrm{~F}\left(\frac{s}{a}\right)$.
(iii) Show that the Laplace transform of $\mathrm{f}^{\prime}(t)$ is $s \mathrm{~F}(s)-\mathrm{f}(0)$.
(iv) In the case $\mathrm{f}(t)=\sin t$, show that $\mathrm{F}(s)=\frac{1}{s^{2}+1}$.

Using only these four results, find the Laplace transform of $\mathrm{e}^{-p t} \cos q t$, where $p>0$ and $q>0$.
$5 \quad$ The numbers x, y and z satisfy

$$
\begin{aligned}
x+y+z & =1 \\
x^{2}+y^{2}+z^{2} & =2 \\
x^{3}+y^{3}+z^{3} & =3
\end{aligned}
$$

Show that

$$
y z+z x+x y=-\frac{1}{2}
$$

Show also that $x^{2} y+x^{2} z+y^{2} z+y^{2} x+z^{2} x+z^{2} y=-1$, and hence that

$$
x y z=\frac{1}{6} .
$$

Let $S_{n}=x^{n}+y^{n}+z^{n}$. Use the above results to find numbers a, b and c such that the relation

$$
S_{n+1}=a S_{n}+b S_{n-1}+c S_{n-2}
$$

holds for all n.

6 Show that $\left|\mathrm{e}^{\mathrm{i} \beta}-\mathrm{e}^{\mathrm{i} \alpha}\right|=2 \sin \frac{1}{2}(\beta-\alpha)$ for $0<\alpha<\beta<2 \pi$. Hence show that

$$
\left|\mathrm{e}^{\mathrm{i} \alpha}-\mathrm{e}^{\mathrm{i} \beta}\right|\left|\mathrm{e}^{\mathrm{i} \gamma}-\mathrm{e}^{\mathrm{i} \delta}\right|+\left|\mathrm{e}^{\mathrm{i} \beta}-\mathrm{e}^{\mathrm{i} \gamma}\right|\left|\mathrm{e}^{\mathrm{i} \alpha}-\mathrm{e}^{\mathrm{i} \delta}\right|=\left|\mathrm{e}^{\mathrm{i} \alpha}-\mathrm{e}^{\mathrm{i} \gamma}\right|\left|\mathrm{e}^{\mathrm{i} \beta}-\mathrm{e}^{\mathrm{i} \delta}\right|
$$

where $0<\alpha<\beta<\gamma<\delta<2 \pi$.
Interpret this result as a theorem about cyclic quadrilaterals.
$7 \quad$ (i) The functions $\mathrm{f}_{n}(x)$ are defined for $n=0,1,2, \ldots$, by

$$
\mathrm{f}_{0}(x)=\frac{1}{1+x^{2}} \quad \text { and } \quad \mathrm{f}_{n+1}(x)=\frac{\mathrm{df}_{n}(x)}{\mathrm{d} x}
$$

Prove, for $n \geqslant 1$, that

$$
\left(1+x^{2}\right) \mathrm{f}_{n+1}(x)+2(n+1) x \mathrm{f}_{n}(x)+n(n+1) \mathrm{f}_{n-1}(x)=0 .
$$

(ii) The functions $\mathrm{P}_{n}(x)$ are defined for $n=0,1,2, \ldots$, by

$$
\mathrm{P}_{n}(x)=\left(1+x^{2}\right)^{n+1} \mathrm{f}_{n}(x)
$$

Find expressions for $\mathrm{P}_{0}(x), \mathrm{P}_{1}(x)$ and $\mathrm{P}_{2}(x)$.
Prove, for $n \geqslant 0$, that

$$
\mathrm{P}_{n+1}(x)-\left(1+x^{2}\right) \frac{\mathrm{dP}_{n}(x)}{\mathrm{d} x}+2(n+1) x \mathrm{P}_{n}(x)=0
$$

and that $\mathrm{P}_{n}(x)$ is a polynomial of degree n.
$8 \quad$ Let m be a positive integer and let n be a non-negative integer.
(i) Use the result $\lim _{t \rightarrow \infty} \mathrm{e}^{-m t} t^{n}=0$ to show that

$$
\lim _{x \rightarrow 0} x^{m}(\ln x)^{n}=0
$$

By writing x^{x} as $\mathrm{e}^{x \ln x}$ show that

$$
\lim _{x \rightarrow 0} x^{x}=1
$$

(ii) Let $I_{n}=\int_{0}^{1} x^{m}(\ln x)^{n} \mathrm{~d} x$. Show that

$$
I_{n+1}=-\frac{n+1}{m+1} I_{n}
$$

and hence evaluate I_{n}.
(iii) Show that

$$
\int_{0}^{1} x^{x} \mathrm{~d} x=1-\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{3}\right)^{3}-\left(\frac{1}{4}\right)^{4}+\cdots
$$

Section B: Mechanics

$9 \quad$ A particle is projected under gravity from a point P and passes through a point Q. The angles of the trajectory with the positive horizontal direction at P and at Q are θ and ϕ, respectively. The angle of elevation of Q from P is α.
(i) Show that $\tan \theta+\tan \phi=2 \tan \alpha$.
(ii) It is given that there is a second trajectory from P to Q with the same speed of projection. The angles of this trajectory with the positive horizontal direction at P and at Q are θ^{\prime} and ϕ^{\prime}, respectively. By considering a quadratic equation satisfied by $\tan \theta$, show that $\tan \left(\theta+\theta^{\prime}\right)=-\cot \alpha$. Show also that $\theta+\theta^{\prime}=\pi+\phi+\phi^{\prime}$.

10 A light spring is fixed at its lower end and its axis is vertical. When a certain particle P rests on the top of the spring, the compression is d. When, instead, P is dropped onto the top of the spring from a height h above it, the compression at time t after P hits the top of the spring is x. Obtain a second-order differential equation relating x and t for $0 \leqslant t \leqslant T$, where T is the time at which P first loses contact with the spring.

Find the solution of this equation in the form

$$
x=A+B \cos (\omega t)+C \sin (\omega t),
$$

where the constants A, B, C and ω are to be given in terms of d, g and h as appropriate.
Show that

$$
T=\sqrt{d / g}(2 \pi-2 \arctan \sqrt{2 h / d})
$$

11 A comet in deep space picks up mass as it travels through a large stationary dust cloud. It is subject to a gravitational force of magnitude $M f$ acting in the direction of its motion. When it entered the cloud, the comet had mass M and speed V. After a time t, it has travelled a distance x through the cloud, its mass is $M(1+b x)$, where b is a positive constant, and its speed is v.
(i) In the case when $f=0$, write down an equation relating V, x, v and b. Hence find an expression for x in terms of b, V and t.
(ii) In the case when f is a non-zero constant, use Newton's second law in the form

$$
\text { force }=\text { rate of change of momentum }
$$

to show that

$$
v=\frac{f t+V}{1+b x} .
$$

Hence find an expression for x in terms of b, V, f and t.
Show that it is possible, if b, V and f are suitably chosen, for the comet to move with constant speed. Show also that, if the comet does not move with constant speed, its speed tends to a constant as $t \rightarrow \infty$.

Section C: Probability and Statistics

(i) Albert tosses a fair coin k times, where k is a given positive integer. The number of heads he gets is X_{1}. He then tosses the coin X_{1} times, getting X_{2} heads. He then tosses the coin X_{2} times, getting X_{3} heads. The random variables X_{4}, X_{5}, \ldots are defined similarly. Write down $\mathrm{E}\left(X_{1}\right)$.
By considering $\mathrm{E}\left(X_{2} \mid X_{1}=x_{1}\right)$, or otherwise, show that $\mathrm{E}\left(X_{2}\right)=\frac{1}{4} k$.
Find $\sum_{i=1}^{\infty} \mathrm{E}\left(X_{i}\right)$.
(ii) Bertha has k fair coins. She tosses the first coin until she gets a tail. The number of heads she gets before the first tail is Y_{1}. She then tosses the second coin until she gets a tail and the number of heads she gets with this coin before the first tail is Y_{2}. The random variables $Y_{3}, Y_{4}, \ldots, Y_{k}$ are defined similarly, and $Y=\sum_{i=1}^{k} Y_{i}$.
Obtain the probability generating function of Y, and use it to find $\mathrm{E}(Y), \operatorname{Var}(Y)$ and $\mathrm{P}(Y=r)$.

13 (i) The point P lies on the circumference of a circle of unit radius and centre O. The angle, θ, between $O P$ and the positive x-axis is a random variable, uniformly distributed on the interval $0 \leqslant \theta<2 \pi$. The cartesian coordinates of P with respect to O are (X, Y). Find the probability density function for X, and calculate $\operatorname{Var}(X)$.

Show that X and Y are uncorrelated and discuss briefly whether they are independent.
(ii) The points $P_{i}(i=1,2, \ldots, n)$ are chosen independently on the circumference of the circle, as in part (i), and have cartesian coordinates $\left(X_{i}, Y_{i}\right)$. The point \bar{P} has coordinates (\bar{X}, \bar{Y}), where $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$. Show that \bar{X} and \bar{Y} are uncorrelated.
Show that, for large $n, \mathrm{P}\left(|\bar{X}| \leqslant \sqrt{\frac{2}{n}}\right) \approx 0.95$.

