Functions & Curve Sketching (STEP) (5 pages; 2/6/23)

See also:

"Cubics" (STEP)

"Transformations" (STEP)

Contents

- (A) Checklist of curve sketching devices
- (B) Transformation of a simpler function
- (C) Symmetries of y = f(x)
- (D) Greatest or least value of a function
- (E) Breaking down the domain
- (F) Miscellaneous

(A) Checklist of curve sketching devices

- (i) Transformation of a simpler function [see (B)]
- (ii) Intercepts with axes
- (iii) Behaviour for large positive and negative *x* and *y*
- (iv) Vertical and horizontal asymptotes
- (v) Symmetries:
- (a) about x = a (special case: x = 0; ie y-axis)
- (b) rotational symmetry (odd function)
- (c) symmetry about y = x
- (vi) Roots
- (vii) Greatest or least value of a function [see (D)]
- (viii) Gradient of function
- (ix) Stationary points
- (x) Points of inflexion
- (xi) Breaking down the domain [see (E)]

(B) Transformation of a simpler function

Example 1: $y = \ln (1 - x)$ is the reflection in $x = \frac{1}{2}$ of y = lnx

Example 2: What combination of transformations converts $y = 2^x$ to $y = 2^{4x-2}$?

Solution

 $y = 2^x \rightarrow y = 2^{4x}$ is a stretch of scale factor $\frac{1}{4}$ in the *x*-direction

Then
$$y = 2^{4x} \rightarrow y = 2^{4(x-\frac{1}{2})} = 2^{4x-2}$$
 is a translation of $\begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix}$

[Alternatively, $y = 2^{4x} \rightarrow y = \left(\frac{1}{4}\right)2^{4x} = 2^{4x-2}$ is a stretch of scale factor $\frac{1}{4}$ in the *y*-direction.]

(C) Symmetries of y = f(x)

(1) Types of symmetry

(a) about x = a (special case: x = 0; ie y-axis)

Either f(2a - x) = f(x)

Or $f(a - \lambda) = f(a + \lambda)$ for all λ

[setting $x = a + \lambda$ in f(2a - x) = f(x)]

 $eg \sin(\pi - \theta) = sin\theta$, and the sine curve has symmetry about $\theta = \frac{\pi}{2}$

[See "Transformations" (STEP)]

(b) rotational symmetry (odd function)

f(-x) = -f(x)

 $eg sin(-\theta) = sin\theta$

(d) symmetry about y = x

occurs when there is symmetry with respect to *x* and *y*;

eg sinhx + sinhy = 1

(2) If you are asked to sketch a curve defined for $x \in [a, b]$, consider whether it might have symmetry about the mid-point $\frac{a+b}{2}$.

(D) Greatest or least value of a function

(1) Beware of establishing the greatest or least value of a function from stationary points: these only indicate local maxima and minima.

Also, a greatest or least value may occur at a boundary of the domain.

(2) Possibilities for demonstrating that $f(x) \ge 0$

(i) $f(x) = [g(x)]^2 + [h(x)]^2$ (for all x)

(ii) For $x \ge a$: establish that $f(a) \ge 0$ and that $f'(x) \ge 0$

for $x \ge a$.

(iii) $f(x) = x \sinh x [g(x)]^2$ (as x & sinhx will always have the same sign - unless they are both zero) (for all x)

(E) Breaking down the domain

Example: Sketch the graph of $\sqrt{x^2 - 2x + 1}$ for $0 \le x \le 2$ Solution

For
$$0 \le x \le 1$$
, $\sqrt{x^2 - 2x + 1} = \sqrt{(x - 1)^2} = \sqrt{(1 - x)^2} = 1 - x$
For $1 \le x \le 2$, $\sqrt{x^2 - 2x + 1} = \sqrt{(x - 1)^2} = x - 1$

(F) Miscellaneous

(1) For y = |f(x)|, when f(x) = 0, there will be a cusp.

Note when sketching the curve that $f'(x_0 + \delta) = -f'(x_0 - \delta)$.