See also:
"Cubics" (STEP)
"Transformations" (STEP)

Contents

(A) Checklist of curve sketching devices
(B) Transformation of a simpler function
(C) Symmetries of $y=f(x)$
(D) Greatest or least value of a function
(E) Breaking down the domain
(F) Miscellaneous

(A) Checklist of curve sketching devices

(i) Transformation of a simpler function [see (B)]
(ii) Intercepts with axes
(iii) Behaviour for large positive and negative x and y
(iv) Vertical and horizontal asymptotes
(v) Symmetries:
(a) about $x=a$ (special case: $x=0$; ie y-axis)
(b) rotational symmetry (odd function)
(c) symmetry about $y=x$
(vi) Roots
(vii) Greatest or least value of a function [see (D)]
(viii) Gradient of function
(ix) Stationary points
(x) Points of inflexion
(xi) Breaking down the domain [see (E)]
(B) Transformation of a simpler function

Example 1: $y=\ln (1-x)$ is the reflection in $x=\frac{1}{2}$ of $y=\ln x$
Example 2: What combination of transformations converts $y=2^{x}$ to $y=2^{4 x-2}$?

Solution
$y=2^{x} \rightarrow y=2^{4 x}$ is a stretch of scale factor $\frac{1}{4}$ in the x-direction

Then $y=2^{4 x} \rightarrow y=2^{4\left(x-\frac{1}{2}\right)}=2^{4 x-2}$ is a translation of $\binom{\frac{1}{2}}{0}$
[Alternatively, $y=2^{4 x} \rightarrow y=\left(\frac{1}{4}\right) 2^{4 x}=2^{4 x-2}$ is a stretch of scale factor $\frac{1}{4}$ in the y-direction.]
(C) Symmetries of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$
(1) Types of symmetry
(a) about $x=a$ (special case: $x=0$; ie y-axis)

Either $f(2 a-x)=f(x)$
Or $f(a-\lambda)=f(a+\lambda)$ for all λ
[setting $x=a+\lambda$ in $f(2 a-x)=f(x)$]
$e g \sin (\pi-\theta)=\sin \theta$, and the sine curve has symmetry about $\theta=\frac{\pi}{2}$
[See "Transformations" (STEP)]
(b) rotational symmetry (odd function)

$$
f(-x)=-f(x)
$$

eg $\sin (-\theta)=\sin \theta$
(d) symmetry about $y=x$
occurs when there is symmetry with respect to x and y;
eg $\sinh x+\sinh y=1$
(2) If you are asked to sketch a curve defined for $x \in[a, b]$, consider whether it might have symmetry about the mid-point $\frac{a+b}{2}$.

(D) Greatest or least value of a function

(1) Beware of establishing the greatest or least value of a function from stationary points: these only indicate local maxima and minima.

Also, a greatest or least value may occur at a boundary of the domain.
(2) Possibilities for demonstrating that $f(x) \geq 0$
(i) $f(x)=[g(x)]^{2}+[h(x)]^{2}($ for all $x)$
(ii) For $x \geq a$: establish that $f(a) \geq 0$ and that $f^{\prime}(x) \geq 0$ for $x \geq a$.
(iii) $f(x)=x \sinh x[g(x)]^{2}$ (as $x \& \sinh x$ will always have the same sign - unless they are both zero) (for all x)

(E) Breaking down the domain

Example: Sketch the graph of $\sqrt{x^{2}-2 x+1}$ for $0 \leq x \leq 2$

Solution

For $0 \leq x \leq 1, \sqrt{x^{2}-2 x+1}=\sqrt{(x-1)^{2}}=\sqrt{(1-x)^{2}}=1-x$
For $1 \leq x \leq 2, \sqrt{x^{2}-2 x+1}=\sqrt{(x-1)^{2}}=x-1$

(F) Miscellaneous

(1) For $y=|f(x)|$, when $f(x)=0$, there will be a cusp.

Note when sketching the curve that $f^{\prime}\left(x_{0}+\delta\right)=-f^{\prime}\left(x_{0}-\delta\right)$.

