STEP 2022, P3, Q8 - Solution (5 pages; 17/2/24)

(i) 1st Part

By De Moivre's theorem,

$$(\cos\theta + i\sin\theta)^{k} = \cos(k\theta) + i\sin(k\theta) \quad (*)$$
Also, $(\cos\theta + i\sin\theta)^{k} = \cos^{k}\theta(1 + i\tan\theta)^{k}$

$$= \cos^{k}\theta(1 + ki\tan\theta + {k \choose 2}(i\tan\theta)^{2} + {k \choose 3}(i\tan\theta)^{3}$$

$$+ {k \choose 4}(i\tan\theta)^{4} + {k \choose 5}(i\tan\theta)^{5} + \cdots) \quad (**) \text{ (for positive integer } k)$$
Then, equating Im. parts of (*) and (**),
 $\sin(k\theta) = \cos^{k}\theta(k\tan\theta - {k \choose 3}\tan^{3}\theta + {k \choose 5}\tan^{5}\theta - \cdots)$

$$= \cos^{k}\theta\tan\theta(k - {k \choose 3}\tan^{2}\theta + {k \choose 5}\tan^{4}\theta - \cdots)$$

$$= \sin\theta\cos^{k-1}\theta(k - {k \choose 3}(\sec^{2}\theta - 1) + {k \choose 5}(\sec^{2}\theta - 1)^{2} - \cdots),$$
as required

2nd Part

Equating Re. parts of (*) and (**),

$$\cos(k\theta) = \cos^k\theta(1 - \binom{k}{2}(\sec^2\theta - 1) + \binom{k}{4}(\sec^2\theta - 1)^2 - \cdots)$$

[These expressions for $sin(k\theta)$ and $cos(k\theta)$ are in fact valid for k = 1 as well.]

(ii) 1st Part

Write $sin(k\theta) = sin\theta cos^{k-1}\theta \left(k - {k \choose 3}(sec^2\theta - 1) + {k \choose 5}(sec^2\theta - 1)^2 - \cdots\right)$ Now, $\theta = cos^{-1} \left(\frac{1}{a}\right) \Rightarrow cos\theta = \frac{1}{a}$, so that $sin\theta \neq 0$ (otherwise a would be 1). And $cos^{k-1}\theta = \frac{1}{a^k} \neq 0$. Also, $sec^2\theta - 1 = a^2 - 1$, which is even, as a is odd. Then $sin(k\theta) = 0$ $\Rightarrow k - {k \choose 3}(sec^2\theta - 1) + {k \choose 5}(sec^2\theta - 1)^2 - \cdots = 0$ and so as all the terms after the 1st are even it follows that k mu

and so, as all the terms after the 1^{st} are even, it follows that k must be even.

2nd Part

$$sin(k\theta) = 0 \Rightarrow 2sin\left(\frac{1}{2}k\theta\right)cos\left(\frac{1}{2}k\theta\right) = 0$$

We are told that $sin(m\theta) \neq 0$ for m < k, so that $sin\left(\frac{1}{2}k\theta\right) \neq 0$ and hence $cos\left(\frac{1}{2}k\theta\right) = 0$

3rd Part

Suppose that $\theta = \frac{c}{d}$ is rational (where c & d are positive

integers). Then it would be possible to find a positive integer k such that $sin(k\theta) = 0$, such that $sin(m\theta) \neq 0$ for 0 < m < k (Let k be the smallest positive integer such that $k\frac{c}{d} = 180n$, for some positive integer n. Such a k will exist, as (180d). $\frac{c}{d} = 180c$, and we could then consider each positive integer less than 180d.)

From the 2nd Part of (i),

$$cos(k\theta) = cos^k \theta (1 - {k \choose 2})(sec^2\theta - 1) + {k \choose 4}(sec^2\theta - 1)^2 - \cdots)$$

and so (as $\frac{k}{2}$ is an integer)
 $cos\left(\frac{k}{2}\theta\right) = cos^{\left(\frac{k}{2}\right)}\theta(1 - {\binom{k}{2}}{2})(a^2 - 1) + {\binom{k}{2}}{4}(a^2 - 1)^2 - \cdots)$
Then $cos^{\left(\frac{k}{2}\right)}\theta = (\frac{1}{a})^{\left(\frac{k}{2}\right)} \neq 0$
And $a^2 - 1$ is even (as *a* is odd), so that ${\binom{k}{2}}{2}(a^2 - 1)^2$ is an even
integer. Also $(a^2 - 1)^2$ is even, so that ${\binom{k}{2}}{4}(a^2 - 1)^2$ is also an
even integer, and so on for the other terms.

Thus, $1 - \binom{k}{2}{2}(a^2 - 1) + \binom{k}{2}{4}(a^2 - 1)^2 - \cdots$ is odd, and hence can't be zero.

Therefore $cos\left(\frac{k}{2}\theta\right) \neq 0$, contradicting the result in the 2nd Part. And so θ must be irrational, as required. (iii) As in (ii), write

 $sin(k\phi) = sin\phi cos^{k-1}\phi \left(k - {\binom{k}{3}}(sec^2\phi - 1) + {\binom{k}{5}}(sec^2\phi - 1)^2 - \cdots\right) \quad (***)$ Now, $\phi = cot^{-1}\left(\frac{1}{b}\right) \Rightarrow cot\phi = \frac{cos\phi}{sin\phi} = \frac{1}{b}$, so that $sin\phi \neq 0$, otherwise $cos\phi = 1$ and $cot\phi$ is undefined. Also $cos\phi \neq 0$, otherwise $sin\phi = 1$ and $cot\phi = 0$. And $sec^2\phi - 1 = tan^2\phi = b^2$, which is even. As before, if ϕ is rational, then $sin(k\phi) = 0$ for some positive integer k, such that $sin(m\phi) \neq 0$ for all integer m such that 0 < m < k.

Then, from (***),
$$sin(k\phi) = 0$$

$$\Rightarrow k - \binom{k}{3}(sec^{2}\phi - 1) + \binom{k}{5}(sec^{2}\phi - 1)^{2} - \dots = 0,$$
as $sin\phi \neq 0 \& cos\phi \neq 0,$
ie $k - \binom{k}{3}b^{2} + \binom{k}{5}b^{4} - \dots = 0$

and so, as all the terms after the 1^{st} are even, it follows that k must be even.

As before,
$$sin(k\phi) = 0 \Rightarrow 2 sin\left(\frac{1}{2}k\phi\right) cos\left(\frac{1}{2}k\phi\right) = 0$$

As $sin(m\phi) \neq 0$ for $m < k$, $sin\left(\frac{1}{2}k\phi\right) \neq 0$,

and hence
$$\cos\left(\frac{1}{2}k\phi\right) = 0$$

Then, from the 2nd Part of (i),

$$\cos\left(\frac{1}{2}k\phi\right)$$
$$= \cos\left(\frac{1}{2}k\right)\phi\left(1 - \left(\frac{1}{2}k\right)(\sec^2\phi - 1) + \left(\frac{1}{2}k\right)(\sec^2\phi - 1)^2 - \cdots\right)$$
$$= 0$$

Hence, as $cos\phi \neq 0$ and $sec^2\phi - 1 = b^2$,

$$1 - \begin{pmatrix} \frac{1}{2}k\\2 \end{pmatrix} b^2 + \begin{pmatrix} \frac{1}{2}k\\4 \end{pmatrix} b^4 - \dots = 0$$

But, as b^2 , b^4 etc are even, this is impossible (as the LHS is $odd - even + even - \dots = odd$).

So this contradicts the supposition that ϕ is rational, and so ϕ must be irrational, as required.