STEP 2022, P3, Q8 - Solution (5 pages; 17/2/24)
(i) $1^{\text {st }}$ Part

By De Moivre's theorem,

$$
\begin{equation*}
(\cos \theta+i \sin \theta)^{k}=\cos (k \theta)+i \sin (k \theta) \tag{*}
\end{equation*}
$$

Also, $(\cos \theta+i \sin \theta)^{k}=\cos ^{k} \theta(1+i \tan \theta)^{k}$
$=\cos ^{k} \theta\left(1+\right.$ kitan $\theta+\binom{k}{2}(i \tan \theta)^{2}+\binom{k}{3}(i \tan \theta)^{3}$
$\left.+\binom{k}{4}(i \tan \theta)^{4}+\binom{k}{5}(i \tan \theta)^{5}+\cdots\right)(* *)($ for positive integer $k)$
Then, equating Im. parts of $\left(^{*}\right)$ and $\left({ }^{* *}\right)$,
$\sin (k \theta)=\cos ^{k} \theta\left(k \tan \theta-\binom{k}{3} \tan ^{3} \theta+\binom{k}{5} \tan ^{5} \theta-\cdots\right)$
$=\cos ^{k} \theta \tan \theta\left(k-\binom{k}{3} \tan ^{2} \theta+\binom{k}{5} \tan ^{4} \theta-\cdots\right)$
$=\sin \theta \cos ^{k-1} \theta\left(k-\binom{k}{3}\left(\sec ^{2} \theta-1\right)+\binom{k}{5}\left(\sec ^{2} \theta-1\right)^{2}-\cdots\right)$,
as required

2nd Part

Equating Re. parts of $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$,
$\cos (k \theta)=\cos ^{k} \theta\left(1-\binom{k}{2}\left(\sec ^{2} \theta-1\right)+\binom{k}{4}\left(\sec ^{2} \theta-1\right)^{2}-\cdots\right)$
[These expressions for $\sin (k \theta)$ and $\cos (k \theta)$ are in fact valid for $k=1$ as well.]
(ii) $1^{\text {st }}$ Part

Write $\sin (k \theta)=\sin \theta \cos ^{k-1} \theta\left(k-\binom{k}{3}\left(\sec ^{2} \theta-1\right)\right.$
$\left.+\binom{k}{5}\left(\sec ^{2} \theta-1\right)^{2}-\cdots\right)$
Now, $\theta=\cos ^{-1}\left(\frac{1}{a}\right) \Rightarrow \cos \theta=\frac{1}{a}$, so that $\sin \theta \neq 0$ (otherwise a would be 1).

And $\cos ^{k-1} \theta=\frac{1}{a^{k}} \neq 0$.
Also, $\sec ^{2} \theta-1=a^{2}-1$, which is even, as a is odd.
Then $\sin (k \theta)=0$
$\Rightarrow k-\binom{k}{3}\left(\sec ^{2} \theta-1\right)+\binom{k}{5}\left(\sec ^{2} \theta-1\right)^{2}-\cdots=0$
and so, as all the terms after the $1^{\text {st }}$ are even, it follows that k must be even.

2nd Part

$\sin (k \theta)=0 \Rightarrow 2 \sin \left(\frac{1}{2} k \theta\right) \cos \left(\frac{1}{2} k \theta\right)=0$
We are told that $\sin (m \theta) \neq 0$ for $m<k$, so that $\sin \left(\frac{1}{2} k \theta\right) \neq 0$ and hence $\cos \left(\frac{1}{2} k \theta\right)=0$

3rd Part

Suppose that $\theta=\frac{c}{d}$ is rational (where $c \& d$ are positive
integers). Then it would be possible to find a positive integer k such that $\sin (k \theta)=0$, such that $\sin (m \theta) \neq 0$ for $0<m<k$ (Let k be the smallest positive integer such that $k \frac{c}{d}=180 n$, for some positive integer n. Such a k will exist, as (180d) $\frac{c}{d}=180 c$, and we could then consider each positive integer less than 180d.)

From the $2^{\text {nd }}$ Part of (i),
$\cos (k \theta)=\cos ^{k} \theta\left(1-\binom{k}{2}\left(\sec ^{2} \theta-1\right)+\binom{k}{4}\left(\sec ^{2} \theta-1\right)^{2}-\cdots\right)$
and so (as $\frac{k}{2}$ is an integer)
$\cos \left(\frac{k}{2} \theta\right)=\cos ^{\left(\frac{k}{2}\right)} \theta\left(1-\binom{\frac{k}{2}}{2}\left(a^{2}-1\right)+\binom{\frac{k}{2}}{4}\left(a^{2}-1\right)^{2}-\cdots\right)$
Then $\cos ^{\left(\frac{k}{2}\right)} \theta=\left(\frac{1}{a}\right)^{\left(\frac{k}{2}\right)} \neq 0$
And $a^{2}-1$ is even (as a is odd), so that $\binom{\frac{k}{2}}{2}\left(a^{2}-1\right)$ is an even integer. Also $\left(a^{2}-1\right)^{2}$ is even, so that $\binom{\frac{k}{2}}{4}\left(a^{2}-1\right)^{2}$ is also an even integer, and so on for the other terms.
Thus, $1-\binom{\frac{k}{2}}{2}\left(a^{2}-1\right)+\binom{\frac{k}{2}}{4}\left(a^{2}-1\right)^{2}-\cdots$ is odd, and hence can't be zero.

Therefore $\cos \left(\frac{k}{2} \theta\right) \neq 0$, contradicting the result in the $2^{\text {nd }}$ Part.
And so θ must be irrational, as required.
(iii) As in (ii), write
$\sin (k \phi)=\sin \phi \cos ^{k-1} \phi\left(k-\binom{k}{3}\left(\sec ^{2} \phi-1\right)\right.$
$\left.+\binom{k}{5}\left(\sec ^{2} \phi-1\right)^{2}-\cdots\right) \quad\left({ }^{* * *}\right)$
Now, $\phi=\cot ^{-1}\left(\frac{1}{b}\right) \Rightarrow \cot \phi=\frac{\cos \phi}{\sin \phi}=\frac{1}{b}$, so that $\sin \phi \neq 0$, otherwise $\cos \phi=1$ and $\cot \phi$ is undefined.

Also $\cos \phi \neq 0$, otherwise $\sin \phi=1$ and $\cot \phi=0$.
And $\sec ^{2} \phi-1=\tan ^{2} \phi=b^{2}$, which is even.
As before, if ϕ is rational, then $\sin (k \phi)=0$ for some positive integer k, such that $\sin (m \phi) \neq 0$ for all integer m such that $0<m<k$.

Then, from $\left({ }^{* * *)}, \sin (k \phi)=0\right.$
$\Rightarrow k-\binom{k}{3}\left(\sec ^{2} \phi-1\right)+\binom{k}{5}\left(\sec ^{2} \phi-1\right)^{2}-\cdots=0$,
as $\sin \phi \neq 0 \& \cos \phi \neq 0$,
ie $k-\binom{k}{3} b^{2}+\binom{k}{5} b^{4}-\cdots=0$
and so, as all the terms after the $1^{\text {st }}$ are even, it follows that k must be even.

As before, $\sin (k \phi)=0 \Rightarrow 2 \sin \left(\frac{1}{2} k \phi\right) \cos \left(\frac{1}{2} k \phi\right)=0$
As $\sin (m \phi) \neq 0$ for $m<k, \sin \left(\frac{1}{2} k \phi\right) \neq 0$,
and hence $\cos \left(\frac{1}{2} k \phi\right)=0$

Then, from the $2^{\text {nd }}$ Part of (i),
$\cos \left(\frac{1}{2} k \phi\right)$
$=\cos ^{\left(\frac{1}{2} k\right)} \phi\left(1-\binom{\frac{1}{2} k}{2}\left(\sec ^{2} \phi-1\right)+\binom{\frac{1}{2} k}{4}\left(\sec ^{2} \phi-1\right)^{2}-\cdots\right)$
$=0$

Hence, as $\cos \phi \neq 0$ and $\sec ^{2} \phi-1=b^{2}$,
$1-\binom{\frac{1}{2} k}{2} b^{2}+\binom{\frac{1}{2} k}{4} b^{4}-\cdots=0$
But, as b^{2}, b^{4} etc are even, this is impossible (as the LHS is
odd - even + even $-\cdots=$ odd $)$.
So this contradicts the supposition that ϕ is rational, and so ϕ must be irrational, as required.

