STEP 2022, P2, Q9 - Solution (4 pages; 21/7/23)
(i)

Referring to the diagram:
Resolving horiz. : $R_{1}+R_{2} \cos \left(90^{\circ}+\theta\right)=0$,
so that $R_{1}=-R_{2}(-\sin \theta)=R_{2} \sin \theta$
Taking moments about P ,
rotational equilibrium $\Rightarrow R_{2}(x-d \sec \theta)+F x \cos \theta=R_{1} x \sin \theta$
$\Rightarrow F x \cos \theta=R_{2}\left(x \sin ^{2} \theta-x+d \sec \theta\right)$
$=R_{2}\left(d \sec \theta-x \cos ^{2} \theta\right)$
Then if $x=d \sec ^{3} \theta$,
$F x \cos \theta=R_{2}(d \sec \theta-d \sec \theta)=0$, so that $F=0$, as required

(ii) $1^{\text {st }}$ Part

$F \leq \mu R_{1}$
And from (i), $F x \cos \theta=R_{2}\left(d \sec \theta-x \cos ^{2} \theta\right)$
$=\frac{R_{1}}{\sin \theta}\left(d \sec \theta-x \cos ^{2} \theta\right)$, on the provisional assumption that F is in the upwards direction.
Hence $\mu \geq \frac{F}{R_{1}}=\frac{d \sec \theta-x \cos ^{2} \theta}{x \sin \theta \cos \theta}=\frac{d \sec ^{3} \theta-x}{x \tan \theta}$
However, as it is given that $x>d \sec ^{3} \theta$, we now see that this implies a negative F, and so the friction must in fact be in the downwards direction, giving
$-F x \cos \theta=\frac{R_{1}}{\sin \theta}\left(d \sec \theta-x \cos ^{2} \theta\right)$,
so that $\mu \geq \frac{F}{R_{1}}=\frac{x \cos ^{2} \theta-d \sec \theta}{x \sin \theta \cos \theta}=\frac{x-d \sec ^{3} \theta}{x \tan \theta}$,
and thus $\mu \geq \frac{x-d \sec ^{3} \theta}{x \tan \theta}$, as required.

2nd Part

If instead $x<d \sec ^{3} \theta$, then $\mu \geq \frac{d \sec ^{3} \theta-x}{x \tan \theta}$, as above.
(iii) Case 1: $x>d \sec ^{3} \theta$
$\mu \geq \frac{x-d \sec ^{3} \theta}{x \tan \theta}$,
so that $\mu \tan \theta \geq 1-\left(\frac{d}{x}\right) \sec ^{3} \theta$,
and $\left(\frac{d}{x}\right) \sec ^{3} \theta \geq 1-\mu \tan \theta$,
If $\mu<\cot \theta$, then $\mu \tan \theta<1$ and $1-\mu \tan \theta>0$,
so that $\frac{\sec ^{3} \theta}{1-\mu \tan \theta} \geq \frac{x}{d}\left({ }^{*}\right)$

Also, $\frac{x}{d}>\sec ^{3} \theta>\frac{\sec ^{3} \theta}{1+\mu \tan \theta}$,
So that $\frac{x}{d} \geq \frac{\sec ^{3} \theta}{1+\mu \tan \theta}\left({ }^{* *}\right)$
Case 2: $x<d \sec ^{3} \theta$
$\mu \geq \frac{d \sec ^{3} \theta-x}{x \tan \theta}$,
then $\mu \tan \theta \geq\left(\frac{d}{x}\right) \sec ^{3} \theta-1$,
and $1+\mu \tan \theta \geq\left(\frac{d}{x}\right) \sec ^{3} \theta$,
so that $\frac{x}{d} \geq \frac{\sec ^{3} \theta}{1+\mu \tan \theta}\left({ }^{* * *}\right)$
Also, $\frac{x}{d}<\sec ^{3} \theta<\frac{\sec ^{3} \theta}{1-\mu \tan \theta}$, provided that $1-\mu \tan \theta>0$;
so that $\frac{x}{d} \leq \frac{\sec ^{3} \theta}{1-\mu \tan \theta}$, provided that $\mu<\cot \theta\left({ }^{* * * *)}\right.$
Case 3: $x=d \sec ^{3} \theta$
$\frac{x}{d}=\sec ^{3} \theta \geq \frac{\sec ^{3} \theta}{1+\mu \tan \theta}(* * * * *)$
And $\frac{x}{d}=\sec ^{3} \theta \leq \frac{\sec ^{3} \theta}{1-\mu \tan \theta}$, provided that $1-\mu \tan \theta>0$, and so $\mu<\cot \theta$

Conclusion

In all 3 cases, $\frac{x}{d} \geq \frac{\sec ^{3} \theta}{1+\mu \tan \theta}\left(\right.$ from $\left({ }^{* *}\right),\left({ }^{* * *}\right) \&\left({ }^{(* * * *)}\right)$
Also, in all 3 cases, $\frac{x}{d} \leq \frac{\sec ^{3} \theta}{1-\mu \tan \theta}$, with the further condition in all 3 cases that $\mu<\cot \theta\left(\right.$ from $\left.\left({ }^{*}\right),\left({ }^{* * * *}\right) \&\left({ }^{* * * * * *}\right)\right)$

In this case, $x<d \sec \theta<d \sec ^{3} \theta$
Referring to the diagram above, rotational equilibrium $\Rightarrow R_{2}(d \sec \theta-x)+R_{1} x \sin \theta=F x \cos \theta$
(in this situation, the frictional force has to be upwards; otherwise there will be a positive anti-clockwise moment about P)
$\Rightarrow F x \cos \theta=R_{2}\left(d \sec \theta-x+x \sin ^{2} \theta\right)=R_{2}\left(d \sec \theta-x \cos ^{2} \theta\right)$
and $\mu \geq \frac{d \sec ^{3} \theta-x}{x \tan \theta}$ as in the $2^{\text {nd }}$ Part of (ii)
Then $\mu x \tan \theta \geq d \sec ^{3} \theta-x$,
and hence $x(\mu \tan \theta+1) \geq d \sec ^{3} \theta$,
so that $x \geq \frac{d \sec ^{3} \theta}{\mu \tan \theta+1}$
Then, as $x<d \sec \theta, \frac{d \sec ^{3} \theta}{\mu \tan \theta+1} \leq x<d \sec \theta$,
so that $\sec ^{2} \theta<\mu \tan \theta+1$,
and hence $\mu \tan \theta>\sec ^{2} \theta-1=\tan ^{2} \theta$,
so that $\mu>\tan \theta$, as required.

