STEP 2022, P2, Q9 - Solution (4 pages; 21/7/23)

(i)

Referring to the diagram:

Resolving horiz. : $R_1 + R_2 \cos(90^\circ + \theta) = 0$,

so that
$$R_1 = -R_2(-\sin\theta) = R_2\sin\theta$$

Taking moments about P,

rotational equilibrium $\Rightarrow R_2(x - dsec\theta) + Fxcos\theta = R_1xsin\theta$

$$\Rightarrow Fxcos\theta = R_2(xsin^2\theta - x + dsec\theta)$$

$$= R_2(dsec\theta - xcos^2\theta)$$

Then if $x = dsec^3\theta$,

 $Fxcos\theta = R_2(dsec\theta - dsec\theta) = 0$, so that F = 0, as required

(ii) 1st Part

 $F \leq \mu R_1$

And from (i), $Fx\cos\theta = R_2(dsec\theta - x\cos^2\theta)$

 $=\frac{R_1}{\sin\theta}(dsec\theta - xcos^2\theta)$, on the provisional assumption that F is in the upwards direction.

Hence
$$\mu \ge \frac{F}{R_1} = \frac{dsec\theta - xcos^2\theta}{xsin\theta cos\theta} = \frac{dsec^3\theta - x}{xtan\theta}$$

However, as it is given that $x > dsec^3\theta$, we now see that this implies a negative F, and so the friction must in fact be in the downwards direction, giving

$$-Fx\cos\theta = \frac{R_1}{\sin\theta} (dsec\theta - x\cos^2\theta),$$

so that $\mu \ge \frac{F}{R_1} = \frac{x\cos^2\theta - dsec\theta}{x\sin\theta\cos\theta} = \frac{x - dsec^3\theta}{x\tan\theta},$

and thus $\mu \geq \frac{x - dsec^3\theta}{xtan\theta}$, as required.

2nd Part

If instead $x < dsec^3\theta$, then $\mu \ge \frac{dsec^3\theta - x}{xtan\theta}$, as above.

(iii) Case 1:
$$x > dsec^{3}\theta$$

 $\mu \ge \frac{x - dsec^{3}\theta}{xtan\theta}$,
so that $\mu tan\theta \ge 1 - \left(\frac{d}{x}\right)sec^{3}\theta$,
and $\left(\frac{d}{x}\right)sec^{3}\theta \ge 1 - \mu tan\theta$,
If $\mu < cot\theta$, then $\mu tan\theta < 1$ and $1 - \mu tan\theta > 0$,
so that $\frac{sec^{3}\theta}{1 - \mu tan\theta} \ge \frac{x}{d}$ (*)

fmng.uk

Also, $\frac{x}{d} > \sec^3\theta > \frac{\sec^3\theta}{1 + u \tan\theta}$, so that $\frac{x}{d} \ge \frac{\sec^3\theta}{1+\mu\tan\theta}$ (**) Case 2: $x < dsec^3\theta$ $\mu \geq \frac{dsec^3\theta - x}{rtan\theta}$, then $\mu tan\theta \geq \left(\frac{d}{r}\right)sec^3\theta - 1$, and $1 + \mu tan\theta \ge \left(\frac{d}{r}\right) sec^3\theta$, so that $\frac{x}{d} \ge \frac{\sec^3\theta}{1+\mu\tan^2}$ (***) Also, $\frac{x}{d} < \sec^3\theta < \frac{\sec^3\theta}{1-\mu\tan\theta}$, provided that $1-\mu\tan\theta > 0$; so that $\frac{x}{d} \leq \frac{\sec^3\theta}{1-\mu\tan\theta}$, provided that $\mu < \cot\theta$ (****) Case 3: $x = dsec^3\theta$ $\frac{x}{d} = \sec^3\theta \ge \frac{\sec^3\theta}{1 + u \tan^2\theta} \quad (****)$ And $\frac{x}{d} = \sec^3\theta \le \frac{\sec^3\theta}{1-u\tan\theta}$, provided that $1 - \mu \tan\theta > 0$, and so $\mu < cot \theta$ (*****) **Conclusion**

In all 3 cases, $\frac{x}{d} \ge \frac{\sec^3\theta}{1+\mu\tan\theta}$ (from (**), (***) & (****))

Also, in all 3 cases, $\frac{x}{d} \leq \frac{\sec^3\theta}{1-\mu\tan\theta}$, with the further condition in all 3 cases that $\mu < \cot\theta$ (from (*), (****) & (*****))

3

(iv)

In this case, $x < dsec\theta < dsec^3\theta$

Referring to the diagram above,

rotational equilibrium $\Rightarrow R_2(dsec\theta - x) + R_1xsin\theta = Fxcos\theta$

(in this situation, the frictional force has to be upwards; otherwise there will be a positive anti-clockwise moment about P)

 $\Rightarrow Fx\cos\theta = R_2(dsec\theta - x + xsin^2\theta) = R_2(dsec\theta - xcos^2\theta)$ and $\mu \ge \frac{dsec^3\theta - x}{xtan\theta}$ as in the 2nd Part of (ii) Then $\mu xtan\theta \ge dsec^3\theta - x$, and hence $x(\mu tan\theta + 1) \ge dsec^3\theta$, so that $x \ge \frac{dsec^3\theta}{\mu tan\theta + 1}$ Then, as $x < dsec\theta$, $\frac{dsec^3\theta}{\mu tan\theta + 1} \le x < dsec\theta$, so that $sec^2\theta < \mu tan\theta + 1$, and hence $\mu tan\theta > sec^2\theta - 1 = tan^2\theta$, so that $\mu > tan\theta$, as required.