STEP 2022, P2, Q8 - Solution (3 pages; 16/7/23)
(i) 1st Part

Let the invariant lines be $y=m x$ (for two values of m) (which excludes the y axis).

Then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{m x}=\binom{a x+b m x}{c x+d m x}$
and $c x+d m x=m(a x+b m x)$,
so that $c+d m=m a+b m^{2}$
or $b m^{2}+(a-d) m-c=0$, as required

2nd Part

If one invariant line is the y axis,
then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{0}{y}=\binom{b y}{d y}$
and $b y=0$ for all y, so that $b=0$
Suppose that the other invariant line is $y=m x$.
As before, $b m^{2}+(a-d) m-c=0$,
and so, as $b=0, m=\frac{c}{a-d}$ (noting that $a \neq d$).
(ii) Case 1: One of the invariant lines is the y axis, so that the other line is $y=\frac{c}{a-d} x$
Result to prove: $(a-d)^{2}=(b-c)^{2}-4 b c=c^{2}$
If the angle between the lines is 45°, then $\frac{c}{a-d}=1$, so that
$c=a-d$, and hence $(a-d)^{2}=c^{2}$, as required.

Case 2: Neither invariant line is the y axis, so that $b m^{2}+(a-d) m-c=0$, with roots $m_{1} \& m_{2}$, say.

The direction vectors for the lines are $\binom{1}{m_{1}} \&\binom{1}{m_{2}}$, and if the angle between the lines is 45°, then $\binom{1}{m_{1}} \cdot\binom{1}{m_{2}}=\left|\binom{1}{m_{1}}\right| \cdot\left|\binom{1}{m_{2}}\right| \cos 45^{\circ}$, so that $1+m_{1} m_{2}=\sqrt{1+m_{1}{ }^{2}} \cdot \sqrt{1+m_{2}{ }^{2}} \cdot \frac{1}{\sqrt{2}}$ and hence $2\left(1+m_{1} m_{2}\right)^{2}=\left(1+m_{1}{ }^{2}\right)\left(1+m_{2}{ }^{2}\right)$, so that $\left(m_{1} m_{2}\right)^{2}+4 m_{1} m_{2}+1-m_{1}{ }^{2}-m_{2}{ }^{2}=0\left({ }^{* *}\right)$ From (${ }^{*}$), $m_{1} m_{2}=-\frac{c}{b}$

Also $b m_{1}{ }^{2}+(a-d) m_{1}-c=0$ and $b m_{2}^{2}+(a-d) m_{2}-c=0$, so that $b\left(m_{1}{ }^{2}+m_{2}{ }^{2}\right)=2 c-(a-d) \cdot\left(-\frac{a-d}{b}\right)$

Then $\left({ }^{* *}\right)$ becomes $\left(-\frac{c}{b}\right)^{2}+4\left(-\frac{c}{b}\right)+1-\frac{1}{b}\left[2 c+\frac{(a-d)^{2}}{b}\right]=0$ or $c^{2}-4 b c+b^{2}-2 b c-(a-d)^{2}=0$, so that $(a-d)^{2}=(b-c)^{2}-4 b c$, as required.
(iii) [Note that the matrix is such that there are two distinct invariant lines passing through the Origin.]

Case 1: One of the invariant lines is the y axis
Then the other invariant line has to be the x axis; ie $m=0$.

From (i), $m=\frac{c}{a-d}$, so that $c=0$
Also, from (i), $b=0$
Case 2: Neither invariant line is the y axis
The two lines will make equal angles with $y=x$ if $m_{2}=\frac{1}{m_{1}}$; ie if $m_{1} m_{2}=1$
[The lines are distinct, so we don't have to consider the case $m_{1}=m_{2}$.]

From (i), $b m^{2}+(a-d) m-c=0$,
If $m_{1} m_{2}=1$, then $\frac{-c}{b}=1$, so that $c=-b$ or $b+c=0$

Thus, necessary and sufficient conditions are:
$b=c=0$ or $b+c=0$;
in other words, $b+c=0$
(iv) $(a-d)^{2}=(b-c)^{2}-4 b c$ and $b+c=0$
$\Rightarrow(a-d)^{2}=4 b^{2}+4 b^{2}=8 b^{2}$
$\operatorname{eg} a=0, b=1, c=-1, d=2 \sqrt{2} ; \operatorname{ie}\left(\begin{array}{cc}0 & 1 \\ -1 & 2 \sqrt{2}\end{array}\right)$

