STEP 2022, P2, Q8 - Solution (3 pages; 16/7/23)

(i) 1st Part

Let the invariant lines be y = mx (for two values of m) (which excludes the y axis).

Then
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ mx \end{pmatrix} = \begin{pmatrix} ax + bmx \\ cx + dmx \end{pmatrix}$$

and $cx + dmx = m(ax + bmx)$,
so that $c + dm = ma + bm^2$
or $bm^2 + (a - d)m - c = 0$, as required

2nd Part

If one invariant line is the *y* axis,

then $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 \\ y \end{pmatrix} = \begin{pmatrix} by \\ dy \end{pmatrix}$

and by = 0 for all y, so that b = 0

Suppose that the other invariant line is y = mx.

As before, $bm^2 + (a - d)m - c = 0$,

and so, as b = 0, $m = \frac{c}{a-d}$ (noting that $a \neq d$).

(ii) Case 1: One of the invariant lines is the *y* axis, so that the other line is $y = \frac{c}{a-d} x$

Result to prove: $(a - d)^2 = (b - c)^2 - 4bc = c^2$

If the angle between the lines is 45°, then $\frac{c}{a-d} = 1$, so that

c = a - d, and hence $(a - d)^2 = c^2$, as required.

Case 2: Neither invariant line is the y axis, so that $bm^2 + (a - d)m - c = 0$, with roots $m_1 \& m_2$, say. (*) The direction vectors for the lines are $\begin{pmatrix} 1 \\ m_1 \end{pmatrix} \& \begin{pmatrix} 1 \\ m_2 \end{pmatrix}$, and if the angle between the lines is 45°, then $\binom{1}{m_1} \cdot \binom{1}{m_2} = \left| \binom{1}{m_1} \right| \cdot \left| \binom{1}{m_2} \right| \cos 45^\circ$ so that $1 + m_1 m_2 = \sqrt{1 + m_1^2} \cdot \sqrt{1 + m_2^2} \cdot \frac{1}{\sqrt{2}}$ and hence $2(1 + m_1 m_2)^2 = (1 + m_1^2)(1 + m_2^2)$. so that $(m_1m_2)^2 + 4m_1m_2 + 1 - m_1^2 - m_2^2 = 0$ (**) From (*), $m_1 m_2 = -\frac{c}{b}$ Also $bm_1^2 + (a - d)m_1 - c = 0$ and $bm_2^2 + (a - d)m_2 - c = 0$, so that $b(m_1^2 + m_2^2) = 2c - (a - d) \cdot (-\frac{a - d}{b})$ Then (**) becomes $\left(-\frac{c}{h}\right)^2 + 4\left(-\frac{c}{h}\right) + 1 - \frac{1}{h}\left[2c + \frac{(a-d)^2}{h}\right] = 0$ or $c^2 - 4bc + b^2 - 2bc - (a - d)^2 = 0$. so that $(a - d)^2 = (b - c)^2 - 4bc$, as required.

(iii) [Note that the matrix is such that there are two distinct invariant lines passing through the Origin.]

Case 1: One of the invariant lines is the *y* axis

Then the other invariant line has to be the *x* axis; ie m = 0.

fmng.uk

From (i), $m = \frac{c}{a-d}$, so that c = 0

Also, from (i), b = 0

Case 2: Neither invariant line is the y axis

The two lines will make equal angles with y = x if $m_2 = \frac{1}{m_1}$; ie if $m_1m_2 = 1$

[The lines are distinct, so we don't have to consider the case $m_1 = m_2$.]

From (i), $bm^2 + (a - d)m - c = 0$,

If $m_1m_2 = 1$, then $\frac{-c}{b} = 1$, so that c = -b or b + c = 0

Thus, necessary and sufficient conditions are:

b = c = 0 or b + c = 0;

in other words, b + c = 0

(iv)
$$(a - d)^2 = (b - c)^2 - 4bc$$
 and $b + c = 0$
 $\Rightarrow (a - d)^2 = 4b^2 + 4b^2 = 8b^2$
eg $a = 0, b = 1, c = -1, d = 2\sqrt{2}$; ie $\begin{pmatrix} 0 & 1 \\ -1 & 2\sqrt{2} \end{pmatrix}$