STEP 2022, P2, Q2 - Solution (4 pages; 14/3/24)
(i) 1st Part
$u_{n+1}=\frac{1}{2}\left(u_{n+2}+u_{n}\right) \Rightarrow 2 u_{n+1}=u_{n+2}+u_{n}$
$\Rightarrow u_{n+2}-u_{n+1}=u_{n+1}-u_{n}$ for all $n \geq 1$;
ie there is a constant difference between successive terms, as required.

Let $u_{n}=f(n)$, where $f(n)$ is a polynomial in n.
As $u_{n+1}-u_{n}=c$, a constant,

2nd Part

Consider $a(n+1)^{3}-a n^{3}=3 a n^{2}+\cdots$
Then, if $u_{n}=f(n)=a n^{r}+b n^{r-1}+\cdots$, where $a \neq 0$ and $r \geq 1$,
$u_{n+1}-u_{n}=\left[a(n+1)^{r}-a n^{r}\right]+\left[a(n+1)^{r-1}-a n^{r-1}\right]+\cdots$
$=$ ran $^{r-1}+\cdots$
and in order that $u_{n+1}-u_{n}=c$, it follows that $r-1=0$,
so that the degree of u_{n} is 1 , unless $r=0$, when the degree is 0 ;
so the degree is at most 1 , as required.
(ii) 1st Part
$v_{n+1}=\frac{1}{2}\left(v_{n+2}+v_{n}\right)-p$
Define t_{n} by $v_{n}=t_{n}+p n^{2}$, so that
$t_{n+1}+p(n+1)^{2}=\frac{1}{2}\left(\left[t_{n+2}+p(n+2)^{2}\right]+\left[t_{n}+p n^{2}\right]\right)-p$,
and hence
$t_{n+1}=\frac{1}{2}\left(t_{n+2}+t_{n}\right)+\frac{p}{2}\left[(n+2)^{2}+n^{2}-2-2(n+1)^{2}\right]$
$=\frac{1}{2}\left(t_{n+2}+t_{n}\right)+\frac{p}{2}(0)$
Thus, from (i), t_{n} has degree at most 1 ,
so that t_{n} can be written in the form $a n+b$,
and then $v_{n}=t_{n}+p n^{2}=p n^{2}+a n+b$; ie v_{n} has degree 2 (as $p \neq 0$), as required

2nd Part

$v_{1}=0 \Rightarrow p+a+b=0$
$v_{2}=0 \Rightarrow 4 p+2 a+b=0$
Then (2) $-(1) \Rightarrow 3 p+a=0 ; a=-3 p$,
and then from (1), $b=-p-(-3 p)=2 p$
Thus $v_{n}=p n^{2}-3 p n+2 p=p(n-1)(n-2)$
(iii) 1st Part

$$
\begin{equation*}
w_{n+1}=\frac{1}{2}\left(w_{n+2}+w_{n}\right)-a n-b \tag{*}
\end{equation*}
$$

[Based on the method for (ii):]
Define T_{n} by $w_{n}=T_{n}+A n^{3}+B n^{2}$.
$\operatorname{Then}(*) \Rightarrow w_{n+1}=T_{n+1}+A(n+1)^{3}+B(n+1)^{2}$
$=\frac{1}{2}\left(\left[T_{n+2}+A(n+2)^{3}+B(n+2)^{2}\right]+\left[T_{n}+A n^{3}+B n^{2}\right]\right)$
$-a n-b$, so that
$T_{n+1}=\frac{1}{2}\left(T_{n+2}+T_{n}\right)+\frac{n^{3}}{2}(2 A-2 A)+\frac{n^{2}}{2}(6 A+2 B-6 A-2 B)$
$+\frac{n}{2}(12 A+4 B-6 A-4 B-2 a)+\frac{1}{2}(8 A+4 B-2 A-2 B-2 b)$
Then, setting $12 A+4 B-6 A-4 B-2 a=0$
and $8 A+4 B-2 A-2 B-2 b=0$ gives:
$6 A-2 a=0 \& 6 A+2 B-2 b=0$,
so that we need $A=\frac{a}{3} \& 2 B=2 b-6 A=2 b-2 a$; ie $B=b-a$
Then $T_{n+1}=\frac{1}{2}\left(T_{n+2}+T_{n}\right)$, and by (i) again T_{n} has degree at most 1 , so that w_{n} can be written in the form $w_{n}=T_{n}+A n^{3}+B n^{2}$
$=C+D n+\frac{a}{3} n^{3}+(b-a) n^{2} ;$ ie w_{n} has degree 3

2nd Part

Given that $w_{1}=w_{2}=0$,

$$
\begin{equation*}
C+D+\frac{a}{3}+(b-a)=0(1) \& C+2 D+\frac{8 a}{3}+4(b-a)=0 \tag{2}
\end{equation*}
$$

Then (2) - (1) gives $D+\frac{7 a}{3}+3(b-a)=0$,
so that $D=\frac{-7 a-9 b+9 a}{3}=\frac{2 a-9 b}{3}$,
and then (1) gives $C+\frac{2 a-9 b}{3}+\frac{a}{3}+(b-a)=0$,
so that $C=\frac{1}{3}(-2 a+9 b-a-3(b-a))=\frac{1}{3}(6 b)=2 b$
and then $w_{n}=C+D n+\frac{a}{3} n^{3}+(b-a) n^{2}$

$$
=2 b+\frac{2 a-9 b}{3} n+(b-a) n^{2}+\frac{a}{3} n^{3}
$$

[Note: Here we have extended the method indicated in part (ii) (ie writing $w_{n}=T_{n}+A n^{3}+B n^{2}$). The official sol'n employs a simpler extension of the method, writing $w_{n}=T_{n}+A n^{3}$, but the price that is paid for this simpler approach is having to consider two separate cases, depending on whether $b=a$ (if it does, then the result from (i) is used; otherwise the result from (ii) is used).]

