STEP 2022, P2, Q1 - Solution (3 pages; 18/7/23)
(i) $\int 2 \sqrt{1+x^{3}} d x=2 x \sqrt{1+x^{3}}-\int 2 x \cdot \frac{\frac{1}{2}\left(3 x^{2}\right)}{\sqrt{1+x^{3}}} d x$ (by Parts)
so that $\int 2 \sqrt{1+x^{3}}+\frac{3 x^{3}}{\sqrt{1+x^{3}}} d x=2 x \sqrt{1+x^{3}}+c$
(ii) By Parts: $\int \frac{\sin x}{x} d x=\frac{1}{x}(-\cos x)-\int(-\cos x) \cdot(-1) x^{-2} d x$ $=-\frac{\cos x}{x}-\int \cos x \cdot x^{-2} d x$
$=-\frac{\cos x}{x}-\left[x^{-2} \sin x-\int \sin x .(-2) x^{-3} d x\right]$
[when integrating by Parts twice, the term that was differentiated in the 1 st application of Parts must also be differentiated in the $2^{\text {nd }}$ application, to avoid going round in circles]
$=-\frac{\cos x}{x}-\frac{\sin x}{x^{2}}-\int 2 \frac{\sin x}{x^{3}} d x$
Hence $\int\left(x^{2}+2\right) \frac{\sin x}{x^{3}} d x=-\frac{\cos x}{x}-\frac{\sin x}{x^{2}}+c$
(iii)(a) $y=\frac{e^{x}}{x}$

Vertical asymptote at $x=0$
When $x=\delta$ (where δ is a small positive number), $y>0$;
and when $x=-\delta, y<0$.

Existence of horizontal asymptote
As $x \rightarrow \infty, y \rightarrow \infty$, and as $x \rightarrow-\infty, y \rightarrow 0^{-}$

Stationary points

$\frac{d y}{d x}=\frac{x e^{x}-e^{x}}{x^{2}}=e^{x} \frac{(x-1)}{x^{2}}$
So there is a stationary point at $x=1$, when $y=e$.
$\frac{d^{2} y}{d x^{2}}=e^{x} \frac{(x-1)}{x^{2}}+e^{x}\left(-x^{-2}+2 x^{-3}\right)=e^{x} \frac{\left(x^{2}-2 x+2\right)}{x^{3}}$
When $x=1, \frac{d^{2} y}{d x^{2}}>0$, so that there is a minimum at $(1, e)$.

Gradient

Also, $x^{2}-2 x+2=(x-1)^{2}+1>0$, so that $\frac{d^{2} y}{d x^{2}}>0$ (ie increasing gradient) for $x>0$, and $\frac{d^{2} y}{d x^{2}}<0$ for $x<0$

(b) To solve: $\int_{a}^{2 a} \frac{e^{x}}{x} d x=\int_{a}^{2 a} \frac{e^{x}}{x^{2}} d x$

Consider $\int_{a}^{2 a} \frac{e^{x}}{x} d x=\left[\frac{1}{x} e^{x}\right]_{a}^{2 a}-\int_{a}^{2 a} e^{x}\left(-\frac{1}{x^{2}}\right) d x$ (by Parts)
Then $\int_{a}^{2 a} \frac{e^{x}}{x} d x=\int_{a}^{2 a} \frac{e^{x}}{x^{2}} d x \Rightarrow\left[\frac{1}{x} e^{x}\right]_{a}^{2 a}=0$
$\Rightarrow \frac{1}{2 a} e^{2 a}-\frac{1}{a} e^{a}=0$
$a=0$ is one solution of (*)
If $a \neq 0, \frac{1}{2} e^{a}-1=0$, so that $e^{a}=2$ and hence $a=\ln 2$
(c) As in (b), $\int_{m}^{n} \frac{e^{x}}{x} d x=\int_{m}^{n} \frac{e^{x}}{x^{2}} d x \Rightarrow\left[\frac{1}{x} e^{x}\right]_{m}^{n}=0$,
so that $\frac{1}{n} e^{n}-\frac{1}{m} e^{m}=0$, and hence $\frac{1}{n} e^{n}=\frac{1}{m} e^{m}\left({ }^{* *}\right)$
From the graph of $y=\frac{e^{x}}{x}$, distinct $m \& n$ satisfying $\left({ }^{* *}\right)$ are only possible if $0<m<1$, and so there are no distinct integers satisfying (**).

