fmng.uk

STEP 2022, P2, Q1 - Solution (3 pages; 18/7/23)

(i)
$$\int 2\sqrt{1+x^3} \, dx = 2x\sqrt{1+x^3} - \int 2x \cdot \frac{\frac{1}{2}(3x^2)}{\sqrt{1+x^3}} \, dx$$
 (by Parts)

so that $\int 2\sqrt{1+x^3} + \frac{3x^3}{\sqrt{1+x^3}} dx = 2x\sqrt{1+x^3} + c$

(ii) By Parts:
$$\int \frac{\sin x}{x} dx = \frac{1}{x} (-\cos x) - \int (-\cos x) \cdot (-1)x^{-2} dx$$

= $-\frac{\cos x}{x} - \int \cos x \cdot x^{-2} dx$
= $-\frac{\cos x}{x} - [x^{-2}\sin x - \int \sin x \cdot (-2)x^{-3} dx]$

[when integrating by Parts twice, the term that was differentiated in the 1st application of Parts must also be differentiated in the 2nd application, to avoid going round in circles]

$$= -\frac{\cos x}{x} - \frac{\sin x}{x^2} - \int 2\frac{\sin x}{x^3} dx$$

Hence $\int (x^2 + 2)\frac{\sin x}{x^3} dx = -\frac{\cos x}{x} - \frac{\sin x}{x^2} + c$

(iii)(a)
$$y = \frac{e^x}{x}$$

Vertical asymptote at x = 0

When $x = \delta$ (where δ is a small positive number), y > 0; and when $x = -\delta$, y < 0.

Existence of horizontal asymptote

As $x \to \infty$, $y \to \infty$, and as $x \to -\infty$, $y \to 0^-$

Stationary points

 $\frac{dy}{dx} = \frac{xe^x - e^x}{x^2} = e^x \frac{(x-1)}{x^2}$

So there is a stationary point at x = 1, when y = e.

$$\frac{d^2y}{dx^2} = e^x \frac{(x-1)}{x^2} + e^x (-x^{-2} + 2x^{-3}) = e^x \frac{(x^2 - 2x + 2)}{x^3}$$

When x = 1, $\frac{d^2y}{dx^2} > 0$, so that there is a minimum at (1, *e*).

Gradient

Also, $x^2 - 2x + 2 = (x - 1)^2 + 1 > 0$, so that $\frac{d^2y}{dx^2} > 0$ (ie

increasing gradient) for x > 0, and $\frac{d^2y}{dx^2} < 0$ for x < 0

fmng.uk

(b) To solve: $\int_{a}^{2a} \frac{e^{x}}{x} dx = \int_{a}^{2a} \frac{e^{x}}{x^{2}} dx$ (*) Consider $\int_{a}^{2a} \frac{e^{x}}{x} dx = \left[\frac{1}{x}e^{x}\right]_{a}^{2a} - \int_{a}^{2a} e^{x} \left(-\frac{1}{x^{2}}\right) dx$ (by Parts) Then $\int_{a}^{2a} \frac{e^{x}}{x} dx = \int_{a}^{2a} \frac{e^{x}}{x^{2}} dx \Rightarrow \left[\frac{1}{x}e^{x}\right]_{a}^{2a} = 0$ $\Rightarrow \frac{1}{2a}e^{2a} - \frac{1}{a}e^{a} = 0$ a = 0 is one solution of (*)If $a \neq 0$, $\frac{1}{2}e^{a} - 1 = 0$, so that $e^{a} = 2$ and hence a = ln2

(c) As in (b), $\int_m^n \frac{e^x}{x} dx = \int_m^n \frac{e^x}{x^2} dx \Rightarrow \left[\frac{1}{x}e^x\right]_m^n = 0$, so that $\frac{1}{n}e^n - \frac{1}{m}e^m = 0$, and hence $\frac{1}{n}e^n = \frac{1}{m}e^m$ (**) From the graph of $y = \frac{e^x}{x}$, distinct m & n satisfying (**) are only possible if 0 < m < 1, and so there are no distinct integers satisfying (**).