STEP 2022, P2, Q10 - Solution (5 pages; 25/2/24)
(i) Applying the suvat equation ' $s=u t+\frac{1}{2} a t^{2 \prime}$ separately to horizontal and vertical motion:

At time t from projection, $s=u \cos \alpha . t$ and $h=u \sin \alpha . t-\frac{1}{2} g t^{2}$ Eliminating $t, h=s \cdot \tan \alpha-\frac{1}{2} g\left(\frac{s}{u \cos \alpha}\right)^{2}$
$=s . \tan \alpha-\frac{g s^{2}}{2 u^{2} \cos ^{2} \alpha}$, as required.
(ii) The plane representing the ground can be thought of as the $x-y$ plane, tilted by an angle θ about the x-axis (in the direction of the positive z-axis).
If the cannon is fired in the direction of P, then $s^{2}=x^{2}+y^{2}$, and we require the height of P above the $x-y$ plane (ie $y \tan \theta$) to be no greater than the maximum h possible. (We note that, for any such point P on the inclined plane, the projectile will be able to reach P, whilst remaining above the plane throughout its motion; ie the only consideration is whether the height of P exceeds the maximum possible.)

Now, $h=\operatorname{stan} \alpha-\frac{g s^{2}}{2 u^{2}}\left(\tan ^{2} \alpha+1\right)$
$=-\frac{g s^{2}}{2 u^{2}}\left(\tan ^{2} \alpha-\frac{2 u^{2}}{g s^{2}} \operatorname{stan} \alpha+1\right)$

This is maximised when $\tan ^{2} \alpha-\frac{2 u^{2}}{g s^{2}} \operatorname{stan} \alpha+1$ is minimised; ie when $\left(\tan \alpha-\frac{u^{2}}{g s}\right)^{2}-\frac{u^{4}}{g^{2} s^{2}}+1$ is minimised.
This occurs when $\tan \alpha-\frac{u^{2}}{g s}=0$, and $h=-\frac{g s^{2}}{2 u^{2}}\left(-\frac{u^{4}}{g^{2} s^{2}}+1\right)$

So we require ytan $\theta \leq-\frac{g s^{2}}{2 u^{2}}\left(-\frac{u^{4}}{g^{2} s^{2}}+1\right)$
Now, the condition to be proved is
$x^{2}+\left(y+\frac{u^{2} \tan \theta}{g}\right)^{2} \leq \frac{u^{4} \sec ^{2} \theta}{g^{2}}$,
[The fact that the condition we are trying to demonstrate (C, say) is in a different form to (${ }^{*}$) can suggest that we haven't derived the condition in the way that was intended by the question setter. It may be worth stopping to see if we have missed a more direct approach. But it might be the case that C is to be used for the next part of the question, and it was intended for $\left({ }^{*}\right)$ to be rearranged to produce C.]
and this is equivalent to
$x^{2}+y^{2}+\frac{u^{4} \tan ^{2} \theta}{g^{2}}+2 y \cdot \frac{u^{2} \tan \theta}{g} \leq \frac{u^{4}}{g^{2}}\left(\tan ^{2} \theta+1\right) ;$
or $s^{2}+\frac{2 y u^{2} \tan \theta}{g} \leq \frac{u^{4}}{g^{2}},\left({ }^{* *}\right)$
or $y \tan \theta \leq\left(\frac{u^{4}}{g^{2}}-s^{2}\right) \cdot \frac{g}{2 u^{2}}=-\frac{g s^{2}}{2 u^{2}}\left(-\frac{u^{4}}{g^{2} s^{2}}+1\right)$, which is $(*)$, as required.

(iii) $1^{\text {st }}$ Part

[It is easy to overlook the word 'directly' here.]
As the projectile is being fired directly up the plane (ie where the gradient of the plane is steepest), $x=0$.

If the furthest point is $(0, y, y \tan \theta)$, then the distance to that point from the cannon is $\sqrt{y^{2}+(y \tan \theta)^{2}}=y \sec \theta$

As $x=0$, the condition in (ii) becomes $\left(y+\frac{u^{2} \tan \theta}{g}\right)^{2} \leq \frac{u^{4} \sec ^{2} \theta}{g^{2}}$ or $y+\frac{u^{2} \tan \theta}{g} \leq \frac{u^{2} \sec \theta}{g}$ (as both sides of this inequality are positive), and so the maximum value of $y \sec \theta$ is
$\frac{u^{2}}{g}(\sec \theta-\tan \theta) \sec \theta=\frac{u^{2}(1-\sin \theta)}{g \cos ^{2} \theta}$ $=\frac{u^{2}(1-\sin \theta)}{g\left(1-\sin ^{2} \theta\right)}=\frac{u^{2}}{g(1+\sin \theta)}$, as required.

2nd Part

Let the furthest point directly down the plane be $(0, y, y \tan \theta)$, where $y=-y^{\prime}$, with $y^{\prime}>0$

The distance from the cannon is $\sqrt{y^{2}+(y \tan \theta)^{2}}=y^{\prime} \sec \theta$ and once again $\left(y+\frac{u^{2} \tan \theta}{g}\right)^{2} \leq \frac{u^{4} \sec ^{2} \theta}{g^{2}}$

We want to find the smallest y (ie largest y^{\prime}) that satisfies this inequality.

This occurs when $y+\frac{u^{2} \tan \theta}{g}=-\frac{u^{2} \sec \theta}{g}$,
so that the required distance $y^{\prime}=-y=\frac{u^{2} \tan \theta}{g}+\frac{u^{2} \sec \theta}{g}$
$=\frac{u^{2}}{g}(\tan \theta+\sec \theta) \sec \theta=\frac{u^{2}(\sin \theta+1)}{g \cos ^{2} \theta}$
$=\frac{u^{2}(1+\sin \theta)}{g\left(1-\sin ^{2} \theta\right)}=\frac{u^{2}}{g(1-\sin \theta)}$
[Check: This is larger than $\frac{u^{2}}{g(1+\sin \theta)}$, which is to be expected, as gravity is assisting the motion.]

(iv) 1st Part

With the projectile being fired in the direction of the road, $y=0$, and the distance along the road is x.

The condition in (ii) becomes $x^{2}+\left(\frac{u^{2} \tan \theta}{g}\right)^{2} \leq \frac{u^{4} \sec ^{2} \theta}{g^{2}}$, and so $x^{2} \leq \frac{u^{4}}{g^{2}}\left(\sec ^{2} \theta-\tan ^{2} \theta\right)=\frac{u^{4}}{g^{2}}$,
and hence the maximum range along the road is $\frac{u^{2}}{g}$,
making a total length of $\frac{2 u^{2}}{g}$, as the cannon can fire in either direction. [It is easy to overlook this!]

2nd Part

In (ii), we obtained the condition $y \tan \theta \leq-\frac{g s^{2}}{2 u^{2}}\left(-\frac{u^{4}}{g^{2} s^{2}}+1\right)$
when the cannon was at the Origin, with P being at $(x, y, y \tan \theta)$,
so that $s^{2}=x^{2}+y^{2}$
With the cannon placed instead at the point $(0, r \cos \theta, r \sin \theta)$, this condition becomes $y \tan \theta-r \sin \theta \leq-\frac{g s^{2}}{2 u^{2}}\left(-\frac{u^{4}}{g^{2} s^{2}}+1\right)$, with $s^{2}=x^{2}+(y-r \cos \theta)^{2}(\operatorname{and} P$ still at $(x, y, y \tan \theta))$, so that $y \tan \theta-r \sin \theta \leq \frac{u^{2}}{2 g}-\frac{g}{2 u^{2}}\left[x^{2}+(y-r \cos \theta)^{2}\right]$

In order to maximise the distance along the road, we need to maximise x, with $y=0$.

So $-r \sin \theta \leq \frac{u^{2}}{2 g}-\frac{g}{2 u^{2}}\left[x^{2}+(-r \cos \theta)^{2}\right]$;
$\frac{g}{2 u^{2}}\left[x^{2}+r^{2} \cos ^{2} \theta\right] \leq \frac{u^{2}}{2 g}+r \sin \theta ;$
$x^{2}+r^{2} \cos ^{2} \theta \leq\left(\frac{u^{2}}{2 g}+r \sin \theta\right) \frac{2 u^{2}}{g} ;$
$x^{2} \leq\left(\frac{u^{2}}{2 g}+r \sin \theta\right) \frac{2 u^{2}}{g}-r^{2} \cos ^{2} \theta$
$=\frac{u^{4}}{g^{2}}-\left(r \cos \theta-\tan \theta \frac{u^{2}}{g}\right)^{2}+\tan ^{2} \theta \frac{u^{4}}{g^{2}}$
Thus x is maximised when $r \cos \theta-\tan \theta \frac{u^{2}}{g}=0$,
so that $r=\frac{\tan \theta u^{2}}{g \cos \theta}$ or $\frac{\tan \theta \sec \theta u^{2}}{g}$,
when $x^{2}=\frac{u^{4}}{g^{2}}\left(1+\tan ^{2} \theta\right)=\frac{u^{4}}{g^{2}} \sec ^{2} \theta$,
and $x=\frac{u^{2} \sec \theta}{g}$,
making a total length of $\frac{2 u^{2} \sec \theta}{g}$, as the cannon can fire in either direction.

