STEP 2021, P3, Q9 - Solution (4 pages; 6/7/23)

## 1st Part



The result to prove is equivalent to $\left(\frac{\sqrt{3}}{2} \cos \phi+\frac{1}{2} \sin \phi\right)\left(\frac{\sqrt{3}}{2} \cos \theta+\frac{1}{2} \sin \theta\right) x=(a-x) \sin \phi \sin \theta$ or $\sin \left(\phi+\frac{\pi}{3}\right) \sin \left(\theta+\frac{\pi}{3}\right) x=(a-x) \sin \phi \sin \theta$
[this suggests use of the Sine Rule]
Referring to the diagram,
$\alpha=\pi-\left(\theta+\frac{\pi}{3}\right)$ and $\beta=\pi-\left(\phi+\frac{\pi}{3}\right)$,
so that $\sin \alpha=\sin \left(\theta+\frac{\pi}{3}\right)$ and $\sin \beta=\sin \left(\phi+\frac{\pi}{3}\right)$
Also, from triangle CPQ, $\frac{\sin \alpha}{a-x}=\frac{\sin \theta}{b}$,
and from triangle PBR, $\frac{\sin \beta}{b}=\frac{\sin \phi}{x}$
Then $\frac{\sin \alpha}{a-x}=\sin \theta \cdot \frac{\sin \phi}{x \sin \beta}$,
and hence $\sin \alpha \sin \beta \cdot x=(a-x) \sin \phi \sin \theta$
and therefore $\sin \left(\phi+\frac{\pi}{3}\right) \sin \left(\theta+\frac{\pi}{3}\right) x=(a-x) \sin \phi \sin \theta$, as required.

## $2^{\text {nd }}$ Part

As the frame is smooth, momentum is conserved parallel to CA for the impact at Q , and so $v \cos \left(\frac{\pi}{3}\right)=u \cos \alpha$, where $u$ is the speed of the ball before impact, and $v$ is its speed afterwards.

Perpendicular to CA, by Newton's law of restitution, $v \sin \left(\frac{\pi}{3}\right)=e u \sin \alpha$

Hence $\frac{v}{u}=\frac{\cos \alpha}{\left(\frac{1}{2}\right)}=\frac{e \sin \alpha}{\left(\frac{\sqrt{3}}{2}\right)}$, so that $e=\sqrt{3} \cot \alpha$ (1)

For the impact at $\mathrm{R}, w \cos \phi=v \cos \left(\frac{\pi}{3}\right)$ and $w \sin \phi=e v \sin \left(\frac{\pi}{3}\right)$, where $w$ is the speed of the ball after impact,
so that $\frac{w}{v}=\frac{\left(\frac{1}{2}\right)}{\cos \phi}=\frac{e\left(\frac{\sqrt{3}}{2}\right)}{\sin \phi}$, so that $e=\frac{\tan \phi}{\sqrt{3}}$

From (2), $\sqrt{3} \cot \phi=\frac{1}{e}$, and from (1), $\tan \alpha=\frac{\sqrt{3}}{e}$
Also, $\tan \alpha=\tan \left(\pi-\left(\theta+\frac{\pi}{3}\right)\right)=-\tan \left(\theta+\frac{\pi}{3}\right)$
$=-\frac{\tan \theta+\tan \left(\frac{\pi}{3}\right)}{1-\tan \theta \tan \left(\frac{\pi}{3}\right)}=\frac{\tan \theta+\sqrt{3}}{\sqrt{3} \tan \theta-1}$
so that $\frac{\sqrt{3}}{e}(\sqrt{3} \tan \theta-1)=\tan \theta+\sqrt{3}$
and hence $\tan \theta\left(\frac{3}{e}-1\right)=\sqrt{3}+\frac{\sqrt{3}}{e}$,
so that $\sqrt{3} \cot \theta=\frac{\frac{3}{e}-1}{1+\frac{1}{e}}=\frac{3-e}{e+1}$

Then, substituting for $\sqrt{3} \cot \phi$ and $\sqrt{3} \cot \theta$ into $(\sqrt{3} \cot \phi+1)(\sqrt{3} \cot \theta+1) x=4(a-x)$ gives $\left(\frac{1}{e}+1\right)\left(\frac{3-e}{e+1}+1\right) x=4(a-x)$,
so that $(3-e+e+1) x=4 e(a-x)$,
and hence $x[4+4 e]=4 e a$,
so that $x=\frac{a e}{1+e}$, as required.

## 3rd Part

For the impact at P (assuming the ball continues on to Q again),
$u_{1} \cos \theta=w \cos \beta$ and $u_{1} \sin \theta=e w \sin \beta$,
where $u_{1}$ is the speed of the ball after impact,
so that $\frac{u_{1}}{w}=\frac{\cos \beta}{\cos \theta}=\frac{e \sin \beta}{\sin \theta}$, so that $e=\frac{\tan \theta}{\tan \beta}$
and hence $\cot \theta=\frac{1}{e \operatorname{etan} \beta}(3)$

Now $\tan \beta=\tan \left(\pi-\left(\phi+\frac{\pi}{3}\right)\right)=-\tan \left(\phi+\frac{\pi}{3}\right)$
$=-\frac{\tan \phi+\tan \left(\frac{\pi}{3}\right)}{1-\tan \phi \tan \left(\frac{\pi}{3}\right)}=\frac{\tan \phi+\sqrt{3}}{\sqrt{3} \tan \phi-1}=\frac{1+\sqrt{3} \cot \phi}{\sqrt{3}-\cot \phi}=\frac{1+\frac{1}{e}}{\sqrt{3}-\frac{1}{e \sqrt{3}}}$,

So that $\sqrt{3} \cot \theta=\frac{\sqrt{3}}{e} \cdot \frac{\sqrt{3}-\frac{1}{e \sqrt{3}}}{1+\frac{1}{e}}=\frac{3-\frac{1}{e}}{e+1}$
Comparing this with the expression for $\sqrt{3} \cot \theta$ found at (*), we have that $\frac{3-\frac{1}{e}}{e+1}=\frac{3-e}{e+1}$

So, as $e \neq-1, \frac{1}{e}=e$, and hence $e=1$, as required.

