STEP 2021, P3, Q4 - Solution (4 pages; 21/5/23)
(i) $[(\underline{x} . \underline{n}) \underline{n}$ and $\underline{x}-(\underline{x} . \underline{n}) \underline{n}$ are the perpendicular components of $\underline{x}$, such that one of the components is in the direction of $\underline{n}$, and therefore the other is parallel to the plane.]

Let $A$ be the angle between $\underline{a}$ and $\underline{m}$, and $B$ be the angle between $\underline{b}$ and $\underline{m}$.

Then $\underline{a} \cdot \underline{m}=|\underline{a}||\underline{m}| \cos A$ and $\underline{b} \cdot \underline{m}=|\underline{b}||\underline{m}| \cos B$, so that $\frac{\cos A}{\cos B}=\frac{\underline{a} \cdot \underline{m}}{\underline{b} \cdot \underline{m}}$, as $\underline{a}$ and $\underline{b}$ are of unit length
$=\frac{\underline{a} \cdot \frac{1}{2}(a+\underline{b})}{\underline{b} \cdot \frac{1}{2}(a+\underline{b})}=\frac{1+\underline{a} \cdot \underline{b}}{1+\underline{b} \cdot \underline{a}}=1$, so that $\cos A=\cos B$, and hence $A=B$,
as $0<\theta<\pi \Rightarrow 0<A<\pi$ and $0<B<\pi$
As $\underline{m}=\frac{1}{2}(\underline{a}+\underline{b})$, it lies between $\underline{a}$ and $\underline{b}$, and as $A=B, \underline{m}$ therefore bisects the angle between $\underline{a}$ and $\underline{b}$.
(ii) $1^{\text {st }}$ Part
$\underline{a}_{1} \cdot \underline{c}=(\underline{a}-(\underline{a} \cdot \underline{c}) \underline{c}) \cdot \underline{c}=\underline{a} \cdot \underline{c}-(\underline{a} \cdot \underline{c})|\underline{c}|^{2}=\underline{a} \cdot \underline{c}-\underline{a} \cdot \underline{c}=0$, as required (as $|\underline{c}|=1)$

## 2nd Part

$$
\begin{aligned}
& \left|\underline{a_{1}}\right|^{2}=\underline{a}_{1} \cdot \underline{a_{1}}=(\underline{a}-(\underline{a} \cdot \underline{c}) \underline{c}) \cdot(\underline{a}-(\underline{a} \cdot \underline{c}) \underline{c}) \\
& =\underline{a} \cdot \underline{a}+(\underline{a} \cdot \underline{c})^{2}(\underline{c} \cdot \underline{c})-2(\underline{a} \cdot \underline{c})^{2} \\
& =1+(\underline{a} \cdot \underline{c})^{2}-2(\underline{a} \cdot \underline{c})^{2} \\
& =1-(\underline{a} \cdot \underline{c})^{2}
\end{aligned}
$$

$=1-(\cos \alpha)^{2}=\sin ^{2} \alpha$
Hence $\left|\underline{a}_{1}\right|=\sin \alpha$

## 3rd Part

$\underline{a}_{1} \cdot \underline{b}_{1}=\left|\underline{a}_{1}\right|\left|\underline{b}_{1}\right| \cos \phi=\sin \alpha \sin \beta \cos \phi$ (as $\left|\underline{b}_{1}\right|=\sin \beta$, by the same method as in the $2^{\text {nd }}$ Part)

Also, $\underline{a}_{1} \cdot \underline{b_{1}}=(\underline{a}-(\underline{a} \cdot \underline{c}) \underline{c}) \cdot(\underline{b}-(\underline{b} \cdot \underline{c}) \underline{c})$
$=\underline{a} \cdot \underline{b}-(\underline{b} \cdot \underline{c}) \underline{a} \cdot \underline{c}-(\underline{a} \cdot \underline{c}) \underline{c} \cdot \underline{b}+(\underline{a} \cdot \underline{c})(\underline{b} \cdot \underline{c}) \underline{c} \cdot \underline{c}$
$=\cos \theta-2 \cos \beta \cos \alpha+\cos \alpha \cos \beta$

So $\sin \alpha \sin \beta \cos \phi=\cos \theta-2 \cos \beta \cos \alpha+\cos \alpha \cos \beta$, and hence $\cos \phi=\frac{\cos \theta-\cos \alpha \cos \beta}{\sin \alpha \sin \beta}$, as required.
(iii) Let $C$ be the angle between $\underline{a}_{1}$ and $\underline{m}_{1}$, and $D$ be the angle between $\underline{b}_{1}$ and $\underline{m}_{1}$. Then $\underline{m}_{1}$ bisects $\underline{a}_{1}$ and $\underline{b}_{1}$ when $C=D$, provided that $\underline{a}_{1}$ and $\underline{b}_{1}$ do not have the same direction; ie provided that $\phi \neq 0$.

So consider separately the two cases:
Case 1: $\phi \neq 0$
Case 2: $\phi=0$

Now, $\cos \theta=\cos (\alpha-\beta) \Leftrightarrow \cos \theta-\cos \alpha \cos \beta=\sin \alpha \sin \beta$, so that, from (ii), $\cos \phi=\frac{\cos \theta-\cos \alpha \cos \beta}{\sin \alpha \sin \beta}=1$, and hence $\phi=0$

So the result to prove becomes:
$\underline{m}_{1}$ bisects $\underline{a}_{1}$ and $\underline{b}_{1}$ if and only if $\alpha=\beta$ or $\phi=0\left({ }^{* * *)}\right.$

Also $\underline{a}_{1} \cdot \underline{m}_{1}=\left|\underline{a}_{1}\right|\left|\underline{m}_{1}\right| \cos C$ and $\underline{b}_{1} \cdot \underline{m}_{1}=\left|\underline{b}_{1}\right|\left|\underline{m}_{1}\right| \cos D\left({ }^{* *}\right)$
And $\underline{m}_{1}=\underline{m}-(\underline{m} . \underline{c}) \underline{c}$
$=\frac{1}{2}(\underline{a}+\underline{b})-\frac{1}{2}[(\underline{a}+\underline{b}) \cdot \underline{c}] \underline{c}\left(^{*}\right)$
And also $\underline{a}_{1}=\underline{a}-(\underline{a} \cdot \underline{c}) \underline{c}$ and $\underline{b}_{1}=\underline{b}-(\underline{b} \cdot \underline{c}) \underline{c}$
so that $\underline{a}+\underline{b}=\underline{a}_{1}+(\underline{a} \cdot \underline{c}) \underline{c}+\underline{b}_{1}+(\underline{b} \cdot \underline{c}) \underline{c}$
$=\underline{a}_{1}+\underline{b}_{1}+[(\underline{a}+\underline{b}) \cdot \underline{c}] \underline{c}$,
so that $(\underline{a}+\underline{b})-[(\underline{a}+\underline{b}) \cdot \underline{c}] \underline{c}=\underline{a}_{1}+\underline{b}_{1}$,
and hence from $\left(^{*}\right), \underline{m}_{1}=\frac{1}{2}\left(\underline{a}_{1}+\underline{b}_{1}\right)$

For Case $1(\phi \neq 0)$, from ( ${ }^{* *}$ ):
$\frac{\cos C}{\cos D}=\frac{\underline{a}_{1} \cdot \frac{1}{2}\left(\underline{a}_{1}+\underline{b}_{1}\right) \sin \beta}{\underline{b}_{1} \cdot \frac{1}{2}\left(\underline{a}_{1}+\underline{b}_{1}\right) \sin \alpha}=\frac{\left(\sin ^{2} \alpha+\sin \alpha \sin \beta \cos \phi\right) \sin \beta}{\left(\sin \alpha \sin \beta \cos \phi+\sin ^{2} \beta\right) \sin \alpha}$
Then $\cos C=\cos D$, and hence $C=D$ (as both $C \& D$ lies between $0^{\circ}$ and $180^{\circ}$ ) when
$\left(\sin ^{2} \alpha+\sin \alpha \sin \beta \cos \phi\right) \sin \beta=\left(\sin \alpha \sin \beta \cos \phi+\sin ^{2} \beta\right) \sin \alpha ;$
ie when $\sin \alpha+\sin \beta \cos \phi=\sin \alpha \cos \phi+\sin \beta$;
or $\sin \alpha-\sin \beta=\cos \phi(\sin \alpha-\sin \beta)$;
ie when $\sin \alpha=\sin \beta$ or $\cos \phi=1$;
ie when $\alpha=\beta$ (as $\alpha \& \beta$ are acute) or $\phi=0$

But, as $\phi \neq 0$, we have proved that (for Case 1), $\underline{m}_{1}$ bisects $\underline{a}_{1}$ and $\underline{b}_{1}$ if and only if $\alpha=\beta$, which means that $\left({ }^{* * *}\right)$ holds.

For Case $2(\phi=0), \underline{a}_{1}=\underline{b}_{1}$ and $\underline{m}_{1}=\frac{1}{2}\left(\underline{a}_{1}+\underline{b}_{1}\right)=\underline{a}_{1}=\underline{b}_{1}$
So $\underline{m}_{1}$ bisects $\underline{a}_{1}$ and $\underline{b}_{1}$ and $\left({ }^{* * *}\right)$ holds, as $\phi=0$.

