STEP 2021, P3, Q4 - Solution (4 pages; 21/5/23)

(i) $[(\underline{x}, \underline{n})\underline{n} \text{ and } \underline{x} - (\underline{x}, \underline{n})\underline{n} \text{ are the perpendicular components of } \underline{x}$, such that one of the components is in the direction of \underline{n} , and therefore the other is parallel to the plane.]

Let *A* be the angle between \underline{a} and \underline{m} , and *B* be the angle between \underline{b} and \underline{m} .

Then
$$\underline{a} \cdot \underline{m} = |\underline{a}| |\underline{m}| \cos A$$
 and $\underline{b} \cdot \underline{m} = |\underline{b}| |\underline{m}| \cos B$,

so that $\frac{\cos A}{\cos B} = \frac{\underline{a.m}}{\underline{b.m}}$, as \underline{a} and \underline{b} are of unit length

$$= \frac{\underline{a} \cdot \underline{\underline{a}} \cdot \underline{\underline{b}}}{\underline{b} \cdot \underline{\underline{a}} \cdot \underline{\underline{b}}} = \frac{1 + \underline{a} \cdot \underline{b}}{1 + \underline{b} \cdot \underline{a}} = 1, \text{ so that } cosA = cosB, \text{ and hence } A = B,$$

as $0 < \theta < \pi \Rightarrow 0 < A < \pi$ and $0 < B < \pi$

As $\underline{m} = \frac{1}{2}(\underline{a} + \underline{b})$, it lies between \underline{a} and \underline{b} , and as A = B, \underline{m} therefore bisects the angle between \underline{a} and \underline{b} .

(ii) 1st Part

 $\underline{a}_1 \cdot \underline{c} = (\underline{a} - (\underline{a} \cdot \underline{c})\underline{c}) \cdot \underline{c} = \underline{a} \cdot \underline{c} - (\underline{a} \cdot \underline{c}) |\underline{c}|^2 = \underline{a} \cdot \underline{c} - \underline{a} \cdot \underline{c} = 0, \text{ as required (as } |\underline{c}| = 1)$

2nd Part

$$\begin{aligned} \left|\underline{a}_{1}\right|^{2} &= \underline{a}_{1} \cdot \underline{a}_{1} = \left(\underline{a} - \left(\underline{a} \cdot \underline{c}\right)\underline{c}\right) \cdot \left(\underline{a} - \left(\underline{a} \cdot \underline{c}\right)\underline{c}\right) \\ &= \underline{a} \cdot \underline{a} + \left(\underline{a} \cdot \underline{c}\right)^{2} \left(\underline{c} \cdot \underline{c}\right) - 2\left(\underline{a} \cdot \underline{c}\right)^{2} \\ &= 1 + \left(\underline{a} \cdot \underline{c}\right)^{2} - 2\left(\underline{a} \cdot \underline{c}\right)^{2} \\ &= 1 - \left(\underline{a} \cdot \underline{c}\right)^{2} \end{aligned}$$

 $= 1 - (\cos \alpha)^2 = \sin^2 \alpha$

Hence $|\underline{a}_1| = sin\alpha$

3rd Part

 $\underline{a}_{1} \cdot \underline{b}_{1} = |\underline{a}_{1}| |\underline{b}_{1}| \cos\phi = \sin\alpha\sin\beta\cos\phi$ (as $|\underline{b}_{1}| = \sin\beta$, by the same method as in the 2nd Part) Also, $\underline{a}_{1} \cdot \underline{b}_{1} = (\underline{a} - (\underline{a} \cdot \underline{c})\underline{c}) \cdot (\underline{b} - (\underline{b} \cdot \underline{c})\underline{c})$ $= \underline{a} \cdot \underline{b} - (\underline{b} \cdot \underline{c})\underline{a} \cdot \underline{c} - (\underline{a} \cdot \underline{c})\underline{c} \cdot \underline{b} + (\underline{a} \cdot \underline{c})(\underline{b} \cdot \underline{c})\underline{c} \cdot \underline{c}$ $= \cos\theta - 2\cos\beta\cos\alpha + \cos\alpha\cos\beta$

So
$$sin\alpha sin\beta cos\phi = cos\theta - 2cos\beta cos\alpha + cos\alpha cos\beta$$
,
and hence $cos\phi = \frac{cos\theta - cos\alpha cos\beta}{sin\alpha sin\beta}$, as required.

(iii) Let *C* be the angle between \underline{a}_1 and \underline{m}_1 , and *D* be the angle between \underline{b}_1 and \underline{m}_1 . Then \underline{m}_1 bisects \underline{a}_1 and \underline{b}_1 when C = D, provided that \underline{a}_1 and \underline{b}_1 do not have the same direction; ie provided that $\phi \neq 0$.

So consider separately the two cases:

Case 1: $\phi \neq 0$ Case 2: $\phi = 0$

Now, $\cos\theta = \cos(\alpha - \beta) \Leftrightarrow \cos\theta - \cos\alpha\cos\beta = \sin\alpha\sin\beta$, so that, from (ii), $\cos\phi = \frac{\cos\theta - \cos\alpha\cos\beta}{\sin\alpha\sin\beta} = 1$, and hence $\phi = 0$ So the result to prove becomes:

<u>*m*</u>₁ bisects <u>*a*</u>₁ and <u>*b*</u>₁ if and only if $\alpha = \beta$ or $\phi = 0$ (***)

Also
$$\underline{a}_1 . \underline{m}_1 = |\underline{a}_1| |\underline{m}_1| \cos C$$
 and $\underline{b}_1 . \underline{m}_1 = |\underline{b}_1| |\underline{m}_1| \cos D$ (**)
And $\underline{m}_1 = \underline{m} - (\underline{m} . \underline{c}) \underline{c}$
 $= \frac{1}{2} (\underline{a} + \underline{b}) - \frac{1}{2} [(\underline{a} + \underline{b}) . \underline{c}] \underline{c}$ (*)
And also $\underline{a}_1 = \underline{a} - (\underline{a} . \underline{c}) \underline{c}$ and $\underline{b}_1 = \underline{b} - (\underline{b} . \underline{c}) \underline{c}$
so that $\underline{a} + \underline{b} = \underline{a}_1 + (\underline{a} . \underline{c}) \underline{c} + \underline{b}_1 + (\underline{b} . \underline{c}) \underline{c}$
 $= \underline{a}_1 + \underline{b}_1 + [(\underline{a} + \underline{b}) . \underline{c}] \underline{c}$,
so that $(\underline{a} + \underline{b}) - [(\underline{a} + \underline{b}) . \underline{c}] \underline{c} = \underline{a}_1 + \underline{b}_1$,
and hence from (*), $\underline{m}_1 = \frac{1}{2} (\underline{a}_1 + \underline{b}_1)$

For Case 1 ($\phi \neq 0$), from (**):

 $\frac{\cos c}{\cos D} = \frac{\underline{a}_{1:\underline{2}}(\underline{a}_{1} + \underline{b}_{1})sin\beta}{\underline{b}_{1}:\underline{1}(\underline{a}_{1} + \underline{b}_{1})sin\alpha} = \frac{(sin^{2}\alpha + sin\alpha sin\beta cos\phi)sin\beta}{(sin\alpha sin\beta cos\phi + sin^{2}\beta)sin\alpha}$

Then cosC = cosD, and hence C = D (as both C & D lies between 0° and 180°) when

 $(\sin^2 \alpha + \sin \alpha \sin \beta \cos \phi) \sin \beta = (\sin \alpha \sin \beta \cos \phi + \sin^2 \beta) \sin \alpha;$

ie when $sin\alpha + sin\beta cos\phi = sin\alpha cos\phi + sin\beta$;

or $sin\alpha - sin\beta = cos\phi(sin\alpha - sin\beta)$;

ie when $sin\alpha = sin\beta$ or $cos\phi = 1$;

ie when $\alpha = \beta$ (as $\alpha \& \beta$ are acute) or $\phi = 0$

But, as $\phi \neq 0$, we have proved that (for Case 1), \underline{m}_1 bisects \underline{a}_1 and \underline{b}_1 if and only if $\alpha = \beta$, which means that (***) holds.

For Case 2 ($\phi = 0$), $\underline{a}_1 = \underline{b}_1$ and $\underline{m}_1 = \frac{1}{2}(\underline{a}_1 + \underline{b}_1) = \underline{a}_1 = \underline{b}_1$

So \underline{m}_1 bisects \underline{a}_1 and \underline{b}_1 and (***) holds, as $\phi = 0$.