STEP 2021, P3, Q3 - Solution (4 pages; 14/7/23)
(i) 1st Part

$$
\begin{aligned}
& \frac{1}{2}\left(I_{n+1}+I_{n-1}\right) \\
& =\frac{1}{2}\left[\int_{0}^{\beta}(\sec x+\tan x)^{n+1} d x+\int_{0}^{\beta}(\sec x+\tan x)^{n-1} d x\right] \\
& =\frac{1}{2} \int_{0}^{\beta}(\sec x+\tan x)^{n-1}\left(\sec ^{2} x+\tan ^{2} x+2 \sec x \tan x+1\right) d x \\
& =\int_{0}^{\beta}(\sec x+\tan x)^{n-1}\left(\sec ^{2} x+\sec x \tan x\right) d x
\end{aligned}
$$

Now, $\frac{d}{d x}\left[\frac{1}{n}(\sec x+\tan x)^{n}\right]$
$=(\sec x+\tan x)^{n-1}\left[-(\cos x)^{-2}(-\sin x)+\sec ^{2} x\right]$
$=(\sec x+\tan x)^{n-1}\left[\sec ^{2} x+\sec x \tan x\right]$
And $\frac{1}{n}(\sec (0)+\tan (0))^{n}=\frac{1}{n}$,
so that $\int_{0}^{\beta}(\sec x+\tan x)^{n-1}\left(\sec ^{2} x+\sec x \tan x\right) d x$
$=\left[\frac{1}{n}(\sec x+\tan x)^{n}\right]_{0}^{\beta}$
$=\frac{1}{n}(\sec \beta+\tan \beta)^{n}-\frac{1}{n}$, as required.
$=\frac{1}{n}\left[(\sec \beta+\tan \beta)^{n}-1\right]$

2nd Part

Method 1
Suppose instead that $I_{n} \geq \frac{1}{n}\left[(\sec \beta+\tan \beta)^{n}-1\right]$

Then $\frac{1}{2}\left(I_{n+1}+I_{n-1}\right) \geq \frac{1}{2 n}\left[(\sec \beta+\tan \beta)^{n+1}-1\right]$
$+\frac{1}{2 n}\left[(\sec \beta+\tan \beta)^{n-1}-1\right]$
$=\frac{1}{2 n}(\sec \beta+\tan \beta)^{n-1}\left[(\sec \beta+\tan \beta)^{2}+1\right]$
$=\frac{1}{2 n}(\sec \beta+\tan \beta)^{n-1}\left[\sec ^{2} \beta+\tan ^{2} \beta+2 \sec \beta \tan \beta+1\right]$
$=\frac{1}{n}(\sec \beta+\tan \beta)^{n-1}\left(\sec ^{2} \beta+\sec \beta \tan \beta\right)$
$=\frac{1}{n}(\sec \beta+\tan \beta)^{n} \sec \beta>\frac{1}{n}(\sec \beta+\tan \beta)^{n}$, as $0<\beta<\frac{\pi}{2}$

But, from the $1^{\text {st }} \operatorname{Part}, \frac{1}{2}\left(I_{n+1}+I_{n-1}\right)=\frac{1}{n}\left[(\sec \beta+\tan \beta)^{n}-1\right]$
$<\frac{1}{n}\left[(\sec \beta+\tan \beta)^{n}\right.$, which contradicts $\left(^{*}\right)$.
Hence $I_{n}<\frac{1}{n}\left[(\sec \beta+\tan \beta)^{n}-1\right]$

Method 2

From the $1^{\text {st }}$ Part, the result to prove is equivalent to
$I_{n}<\frac{1}{2}\left(I_{n+1}+I_{n-1}\right)$ or $I_{n+1}+I_{n-1}-2 I_{n}>0$
And $I_{n+1}+I_{n-1}-2 I_{n}=$
$\int_{0}^{\beta}(\sec x+\tan x)^{n+1}+(\sec x+\tan x)^{n-1}-2(\sec x+\tan x)^{n} d x$
$=\int_{0}^{\beta}(\sec x+\tan x)^{n-1}\left(\sec ^{2} x+\tan ^{2} x+2 \sec x \tan x+1\right.$
$-2 \sec x-2 \tan x) d x$
$=2 \int_{0}^{\beta}(\sec x+\tan x)^{n-1}\left(\sec ^{2} x+\sec x \tan x-\sec x-\tan x\right) d x$
$=2 \int_{0}^{\beta}(\sec x+\tan x)^{n-1}(\sec x+\tan x)(\sec x-1) d x$
$=2 \int_{0}^{\beta}(\sec x+\tan x)^{n}(\sec x-1) d x>0$, as required,
as both $\sec x+\tan x$ and $\sec x-1$ are positive for $0<x<\beta<\frac{\pi}{2}$
(ii) [It isn't clear what approach the question setter has in mind here. Possible options are:
(a) Applying exactly the same method; ie starting by showing that $\frac{1}{2}\left(J_{n+1}+J_{n-1}\right)=\frac{1}{n}\left((1+\tan x)^{n}-\cos ^{n} x\right)$ [This gives the following for the LHS:
$\frac{1}{2}\left[\int_{0}^{\beta}(\sec x \cos \beta+\tan x)^{n+1} d x+\int_{0}^{\beta}(\sec x \cos \beta+\tan x)^{n-1} d x\right]$ $=\frac{1}{2} \int_{0}^{\beta}(\sec x \cos \beta+\tan x)^{n-1}\left(\sec ^{2} x \cos ^{2} \beta+\tan ^{2} x\right.$
$+2 \sec x \sin x+1) d x$, which isn't very promising.]
(b) Modifying the method in some way that takes account of the differences between J_{n} and I_{n}. Nothing obvious springs to mind.
(c) Using the result of Part (i) in some way; eg by making a substitution. Again, nothing obvious springs to mind.
(d) Using an idea that was involved in answering Part (i).

One idea was that of showing that an integral had a positive value. In order to use this we will need to be able to write
$\frac{1}{n}\left((1+\tan x)^{n}-\cos ^{n} x\right)$ as in integral $\left(K_{n}\right.$, say $)$, and show that
$K_{n}-J_{n}>0$
Another idea was using the fact that certain components of the integrand were positive.
(e) Using an idea prompted by a difference between J_{n} and I_{n}.

One such idea that emerges later on is that $\cos \beta<\cos x$ for $0<x<\beta$, and this enables the awkward $\sec x \cos \beta$ to be converted into $\sec x \cos x=1$]

Consider $\frac{d}{d x}\left[\frac{1}{n}\left((1+\tan x)^{n}-\cos ^{n} x\right)\right]$
$=(1+\tan x)^{n-1} \sec ^{2} x-\cos ^{n-1} x(-\sin x)$
Let $K_{n}=\int_{0}^{\beta}(1+\tan x)^{n-1} \sec ^{2} x+\cos ^{n-1} x \sin x d x$
$=\left[\frac{1}{n}\left((1+\tan x)^{n}-\cos ^{n} x\right)\right]_{0}^{\beta}$
$=\frac{1}{n}\left((1+\tan \beta)^{n}-\cos ^{n} \beta\right)-0$
Then the result to be proved is that $K_{n}-J_{n}>0$
Now, $K_{n}-J_{n}=\int_{0}^{\beta}(1+\tan x)^{n-1} \sec ^{2} x+\cos ^{n-1} x \sin x$
$-(\sec x \cos \beta+\tan x)^{n+1} d x$
$>\int_{0}^{\beta}(1+\tan x)^{n-1} \sec ^{2} x+\cos ^{n-1} x \sin x$
$-(\sec x \cos x+\tan x)^{n+1} d x$,
as $x<\beta \Rightarrow \cos x>\cos \beta\left(\right.$ for $0<\beta<\frac{\pi}{2}$),
$=\int_{0}^{\beta}(1+\tan x)^{n-1} \sec ^{2} x+\cos ^{n-1} x \sin x-(1+\tan x)^{n+1} d x$,
$=\int_{0}^{\beta}(1+\tan x)^{n-1}\left(\tan ^{2} x+1\right)+\cos ^{n-1} x \sin x$
$-(1+\tan x)^{n+1} d x$
$=\int_{0}^{\beta}(1+\tan x)^{n-1}+\cos ^{n-1} x \sin x>0$, as required,
as $1+\tan x, \cos x \& \sin x$ are all positive for $0<x<\beta<\frac{\pi}{2}$

