STEP 2021, P3, Q12 - Solution (7 pages; 10/7/23)
(i) $1^{\text {st }}$ Part

By symmetry, all possible numbers rolled by Player 2 are equally likely, whatever the state of X_{12}, and so knowledge of the state of X_{12} does not affect knowledge of the state of X_{23}. Therefore X_{23} is independent of X_{12}, and vice-versa.

$2^{\text {nd }}$ Part

Let X be the total score, so that $X=\sum_{1 \leq i<j \leq n} X_{i j}$
and $E(X)=\sum_{1 \leq i<j \leq n} E\left(X_{i j}\right)$
The number of different $X_{i j}$, where $1 \leq i<j \leq n$, is
$(n-1)+(n-2)+\cdots+0$ (as there are $n-1$ possible numbers greater than 1 etc)
$=\frac{1}{2}(n-1) n$ [or just ${ }^{n} C_{2}$]
and so $E(X)=\frac{1}{2}(n-1) n E\left(X_{12}\right)$, by symmetry; and
$E\left(X_{12}\right)=P($ Player 2 rolls the same number as Player 1$) \times 1$
$+P($ Player 2 rolls a different number to Player 1$) \times 0$
$=\frac{1}{6}$
and hence $E(X)=\frac{1}{12}(n-1) n$

As well as $X_{12} \& X_{23}$ being independent, clearly $X_{12} \& X_{34}$ etc will be independent, so that all $X_{i j}$ are independent of each other.

Because of the independence of the $X_{i j}$,
$\operatorname{Var}(X)=\sum_{1 \leq i<j \leq n} \operatorname{Var}\left(X_{i j}\right)$
$=\frac{1}{2}(n-1) n \operatorname{Var}\left(X_{12}\right)$, again by symmetry.
And $\operatorname{Var}\left(X_{12}\right)=E\left(X_{12}{ }^{2}\right)-\left[E\left(X_{12}\right)\right]^{2}$
where $E\left(X_{12}{ }^{2}\right)$
$=($ Player 2 rolls the same number as Player 1$) \times 1^{2}$
$+P($ Player 2 rolls a different number to Player 1$) \times 0^{2}$ $=\frac{1}{6}$,
so that $\operatorname{Var}(X)=\frac{1}{2}(n-1) n\left[\frac{1}{6}-\left(\frac{1}{6}\right)^{2}\right]$
$=\frac{5}{72}(n-1) n$
(ii) $\operatorname{Var}\left(Y_{1}+\cdots+Y_{m}\right)=E\left[\left(Y_{1}+\cdots+Y_{m}\right)^{2}\right]-\left[E\left(Y_{1}+\cdots+Y_{m}\right)\right]^{2}$
$=\sum_{i=1}^{m} E\left(Y_{i}^{2}\right)+2 \sum_{i<j} E\left(Y_{i} Y_{j}\right)-\left(\sum_{i=1}^{m} E\left(Y_{i}\right)\right)^{2}$
$=\left[\sum_{i=1}^{m} E\left(Y_{i}^{2}\right)\right]+2 \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} E\left(Y_{i} Y_{j}\right)\left(\right.$ as each $\left.E\left(Y_{i}\right)=0\right)$
as required

(iii) $1^{\text {st }}$ Part

The knowledge that $Z_{12}=1$, for example, means that Player 2 rolled an even number, so that $Z_{23}=-1$ is not possible. So the
knowledge of the state of Z_{12} can affect knowledge of the state of Z_{23}, and therefore Z_{23} is not independent of Z_{12}, and vice-versa.

2nd Part

Let Z be the total score, so that $Z=\sum_{1 \leq i<j \leq n} Z_{i j}$
Once again, $E(Z)=\frac{1}{2}(n-1) n E\left(Z_{12}\right)$
And $E\left(Z_{12}\right)=\operatorname{Prob}($ Players $1 \& 2$ both roll the same even number) $\times 1$

+ Prob(Players $1 \& 2$ both roll the same odd number $) \times(-1)$ $+0$
$=\operatorname{Prob}($ Player 1 rolls an even number $)$
$\times \operatorname{Prob}($ Player 2 rolls the same number)
-Prob(Player 1 rolls an odd number)
$\times \operatorname{Prob}($ Player 2 rolls the same number)
$=\frac{1}{2} \cdot \frac{1}{6}-\frac{1}{2} \cdot \frac{1}{6}=0$
So $E(Z)=0$.

3rd Part

$\operatorname{Var} Z=\left[\sum_{1 \leq i<j \leq n} E\left(Z_{i j}{ }^{2}\right)\right]$
$+2 \sum E\left(Z_{i j} Z_{k l}\right)$, where $i<j \& k<l$, and eg $Z_{12} Z_{34}$ and $Z_{34} Z_{12}$ count as the same item [the multiple of 2 already allows for this]

Now, $E\left(Z_{i j}{ }^{2}\right)$
$=\operatorname{Prob}($ Player i rolls an even number $)$
$\times \operatorname{Prob}($ Player j rolls the same number $) \times 1^{2}$

+ Prob(Player i rolls an odd number)
$\times \operatorname{Prob}($ Player j rolls the same number $) \times(-1)^{2}$
$=\frac{1}{2} \cdot \frac{1}{6}+\frac{1}{2} \cdot \frac{1}{6}=\frac{1}{6}$
and, as in the $2^{\text {nd }}$ Part of (i), there $\operatorname{are} \frac{1}{2}(n-1) n$ ways of choosing $i \& j$, so that $=\sum_{1 \leq i<j \leq n} E\left(Z_{i j}{ }^{2}\right)=\frac{1}{12}(n-1) n$

For $E\left(Z_{i j} Z_{k l}\right)$ (where $i<j, k<l$; and eg $Z_{12} Z_{34}$ and $Z_{34} Z_{12}$ count as the same item):

When there are no numbers in common between $i, j, k \& l$, $Z_{i j} \& Z_{k l}$ are independent,
and so $E\left(Z_{i j} Z_{k l}\right)=E\left(Z_{i j}\right) E\left(Z_{k l}\right)=0 \times 0$

Other cases will fall into one of the following categories:
Category A: eg $Z_{47} Z_{49}$ (with $7<9$, as $Z_{47} Z_{49} \& Z_{49} Z_{47}$ count as the same item)

Category B: eg $Z_{47} Z_{24}$ or $Z_{24} Z_{47}$
Category C: eg $Z_{47} Z_{57}$ (with $4<5$)

[See note below.]

For Category A, $Z_{47} Z_{49}$ (eg) will be non-zero when the 4 th player has an even number, the $7^{\text {th }}$ player has the same number \& the $9^{\text {th }}$ player has the same number as well,
or when the 4 th player has an odd number, the $7^{\text {th }}$ player has the same number \& the $9^{\text {th }}$ player has the same number as well.

So $E\left(Z_{47} Z_{49}\right)=\frac{1}{2} \times \frac{1}{6} \times \frac{1}{6} \times 1^{2}+\frac{1}{2} \times \frac{1}{6} \times \frac{1}{6} \times(-1)^{2}=\frac{1}{36}$
Similar reasoning applies to Categories B and C.

To count the number of items in Category A:
For items of the form $Z_{1 j} Z_{1 l}$ (where $j<l$):

$$
{ }^{n-1} C_{2}=\frac{1}{2}(n-1)(n-2)
$$

For items of the form $Z_{2 j} Z_{2 l}$ (where $j<l$):
${ }^{n-2} C_{2}=\frac{1}{2}(n-2)(n-3)$
... For items of the form $Z_{(n-2) j} Z_{(n-2) l}$ (where $j<l$): 1
So total number of items in Category A is
$\frac{1}{2} \sum_{r=1}^{n-2}(n-r)(n-r-1)$
Writing $k=n-r-1$, this becomes
$\frac{1}{2} \sum_{k=n-2}^{1} k(k-1)$
or $\frac{1}{2} \sum_{k=1}^{n-2} k(k-1)=\frac{1}{2} \cdot \frac{1}{6}(n-2)(n-1)(2 n-3)$
$+\frac{1}{2} \cdot \frac{1}{2}(n-2)(n-1)$
$=\frac{1}{12}(n-1)(n-2)[2 n-3+3]=\frac{n}{6}(n-1)(n-2)$

To count the number of items in Category B:
Items of the form $Z_{2 j} Z_{k 2}$: $(n-2) .1$
Items of the form $Z_{3 j} Z_{k 3}:(n-3) .2$
... Items of the form $Z_{(n-1) j} Z_{k(n-1)}$: $1 .(n-2)$

So total number of items in Category B is

$$
\begin{aligned}
& \sum_{r=1}^{n-2} r(n-r-1)=(n-1) \cdot \frac{1}{2}(n-2)(n-1) \\
& -\frac{1}{6}(n-2)(n-1)(2 n-3) \\
& =\frac{1}{6}(n-1)(n-2)[3 n-3-(2 n-3)] \\
& =\frac{n}{6}(n-1)(n-2)
\end{aligned}
$$

To count the number of items in Category C:
This will be the same as for Category A, with ${ }^{n-1} C_{2}$ items of the form $Z_{i n} Z_{k n}$ (with $i<k$) etc.

Thus the total number of items in Categories A, B \& C (together) is
$3 \times \frac{n}{6}(n-1)(n-2)$
and each $E\left(Z_{i j} Z_{k l}\right)$ for these items is $\frac{1}{36}$,
so that $\operatorname{Var} Z=\left[\sum_{1 \leq i<j \leq n} E\left(Z_{i j}{ }^{2}\right)\right]+2 \sum E\left(Z_{i j} Z_{k l}\right)$
$=\frac{1}{12}(n-1) n+2 \times 3 \times \frac{n}{6}(n-1)(n-2)\left(\frac{1}{36}\right)$
$=\frac{n}{36}(n-1)[3+n-2]=\frac{1}{36} n\left(n^{2}-1\right)$, as required.

Note: The Official Solution uses the result of (ii) more directly, by writing $Y_{1}=Z_{12}, Y_{2}=Z_{13}, \ldots, Y_{m}=Z_{(n-1) n}$, with $m={ }^{n} C_{2}$.

However, it doesn't explain the $n \times{ }^{n-1} C_{2}$ appearing in the expression for $2 \sum E\left(Y_{i} Y_{j}\right)$ (or $2 \sum E\left(Z_{i j} Z_{k l}\right)$). This can be justified as follows:

As explained above, the only non-zero $E\left(Z_{i j} Z_{k l}\right)$ items are the ones falling into the 3 categories mentioned. As an alternative to the 3 categories, these items can be classified according to which of the n possible numbers is repeated (note that it isn't possible for a number to appear more than twice, as $i<j \& k<l$). There are then ${ }^{n-1} C_{2}$ ways of choosing the other two numbers, and for each choice of the repeated number and the other 2 numbers, exactly one of the categories A, B or C must occur: Suppose, for example, that the repeated number is 4 . Then the other 2 numbers will either both be less than 4 , or both be greater than 4 , or lie on either side of 4 (corresponding to the categories C, A \& B).

