STEP 2021, P3, Q12 - Solution (7 pages; 10/7/23)

(i) 1^{st} Part

By symmetry, all possible numbers rolled by Player 2 are equally likely, whatever the state of X_{12} , and so knowledge of the state of X_{12} does not affect knowledge of the state of X_{23} . Therefore X_{23} is independent of X_{12} , and vice-versa.

2nd Part

Let X be the total score, so that $X = \sum_{1 \le i < j \le n} X_{ij}$

and $E(X) = \sum_{1 \le i < j \le n} E(X_{ij})$

The number of different X_{ij} , where $1 \le i < j \le n$, is

 $(n-1) + (n-2) + \dots + 0$ (as there are n-1 possible numbers greater than 1 etc)

$$= \frac{1}{2}(n-1)n \text{ [or just } {}^{n}C_{2} \text{]}$$

and so $E(X) = \frac{1}{2}(n-1)n E(X_{12})$, by symmetry; and
 $E(X_{12}) = P(Player \ 2 \ rolls \ the \ same \ number \ as \ Player \ 1) \times 1$
+ $P(Player \ 2 \ rolls \ a \ different \ number \ to \ Player \ 1) \times 0$
 $= \frac{1}{6}$

and hence $E(X) = \frac{1}{12}(n-1)n$

3rd Part

As well as $X_{12} \& X_{23}$ being independent, clearly $X_{12} \& X_{34}$ etc will be independent, so that all X_{ij} are independent of each other.

Because of the independence of the X_{ij} ,

$$Var(X) = \sum_{1 \le i < j \le n} Var(X_{ij})$$

$$= \frac{1}{2}(n-1)n Var(X_{12}), \text{ again by symmetry.}$$

And $Var(X_{12}) = E(X_{12}^2) - [E(X_{12})]^2$
where $E(X_{12}^2)$

$$= (Player 2 rolls the same number as Player 1) \times 1^2$$

$$+P(Player 2 rolls a different number to Player 1) \times 0^2$$

$$= \frac{1}{6},$$

so that $Var(X) = \frac{1}{2}(n-1)n \left[\frac{1}{6} - \left(\frac{1}{6}\right)^2\right]$

$$= \frac{5}{72}(n-1)n$$

(ii)
$$Var(Y_1 + \dots + Y_m) = E[(Y_1 + \dots + Y_m)^2] - [E(Y_1 + \dots + Y_m)]^2$$

$$= \sum_{i=1}^m E(Y_i^2) + 2\sum_{i < j} E(Y_iY_j) - (\sum_{i=1}^m E(Y_i))^2$$

$$= [\sum_{i=1}^m E(Y_i^2)] + 2\sum_{i=1}^{m-1} \sum_{j=i+1}^m E(Y_iY_j) \text{ (as each } E(Y_i) = 0)$$
as required

(iii) 1st Part

The knowledge that $Z_{12} = 1$, for example, means that Player 2 rolled an even number, so that $Z_{23} = -1$ is not possible. So the

knowledge of the state of Z_{12} can affect knowledge of the state of Z_{23} , and therefore Z_{23} is not independent of Z_{12} , and vice-versa.

2nd Part

Let Z be the total score, so that $Z = \sum_{1 \le i < j \le n} Z_{ij}$

Once again, $E(Z) = \frac{1}{2}(n-1)n E(Z_{12})$

And $E(Z_{12}) = Prob(Players 1 \& 2 both roll$ the same even number)× 1

+*Prob*(*Players* 1 & 2 *both roll* the same odd number) \times (-1)

+ 0

= *Prob*(*Player* 1 *rolls* an even number)

× *Prob*(*Player* 2 *rolls the same number*)

-Prob(Player 1 rolls an odd number)

× Prob(Player 2 rolls the same number)

$$= \frac{1}{2} \cdot \frac{1}{6} - \frac{1}{2} \cdot \frac{1}{6} = 0$$

So $E(Z) = 0$.

3rd Part

 $VarZ = [\sum_{1 \le i < j \le n} E(Z_{ij}^{2})]$

 $+2\sum E(Z_{ij}Z_{kl})$, where i < j & k < l, and eg $Z_{12}Z_{34}$ and $Z_{34}Z_{12}$ count as the same item [the multiple of 2 already allows for this]

Now, $E(Z_{ij}^2)$

= Prob(Player i rolls an even number)

× Prob(Player j rolls the same number) × 1² +Prob(Player i rolls an odd number) × Prob(Player j rolls the same number) × (-1)² = $\frac{1}{2} \cdot \frac{1}{6} + \frac{1}{2} \cdot \frac{1}{6} = \frac{1}{6}$

and, as in the 2nd Part of (i), there are $\frac{1}{2}(n-1)n$ ways of choosing i & j, so that $= \sum_{1 \le i < j \le n} E(Z_{ij}^2) = \frac{1}{12}(n-1)n$

fmng.uk

For $E(Z_{ij}Z_{kl})$ (where i < j, k < l; and eg $Z_{12}Z_{34}$ and $Z_{34}Z_{12}$ count as the same item):

When there are no numbers in common between *i*, *j*, *k* & *l*,

 $Z_{ij} \& Z_{kl}$ are independent,

and so $E(Z_{ij}Z_{kl}) = E(Z_{ij})E(Z_{kl}) = 0 \times 0$

Other cases will fall into one of the following categories:

Category A: eg $Z_{47}Z_{49}$ (with 7 < 9, as $Z_{47}Z_{49} \& Z_{49}Z_{47}$ count as the same item)

Category B: eg $Z_{47}Z_{24}$ or $Z_{24}Z_{47}$

Category C: eg $Z_{47}Z_{57}$ (with 4 < 5)

[See note below.]

For Category A, $Z_{47}Z_{49}$ (eg) will be non-zero when

the 4th player has an even number, the 7th player has the same number & the 9th player has the same number as well,

or when the 4th player has an odd number, the 7th player has the same number & the 9th player has the same number as well.

fmng.uk

So
$$E(Z_{47}Z_{49}) = \frac{1}{2} \times \frac{1}{6} \times \frac{1}{6} \times 1^2 + \frac{1}{2} \times \frac{1}{6} \times \frac{1}{6} \times (-1)^2 = \frac{1}{36}$$

Similar reasoning applies to Categories B and C.

To count the number of items in Category A: For items of the form $Z_{1j}Z_{1l}$ (where j < l):

$$^{n-1}C_2 = \frac{1}{2}(n-1)(n-2)$$

For items of the form $Z_{2j}Z_{2l}$ (where j < l):

$$^{n-2}C_2 = \frac{1}{2}(n-2)(n-3)$$

... For items of the form $Z_{(n-2)j}Z_{(n-2)l}$ (where j < l): 1

So total number of items in Category A is

$$\frac{1}{2}\sum_{r=1}^{n-2}(n-r)(n-r-1)$$

Writing k = n - r - 1, this becomes

$$\frac{1}{2}\sum_{k=n-2}^{1}k(k-1)$$

or $\frac{1}{2}\sum_{k=1}^{n-2}k(k-1) = \frac{1}{2}\cdot\frac{1}{6}(n-2)(n-1)(2n-3)$
 $+\frac{1}{2}\cdot\frac{1}{2}(n-2)(n-1)$
 $=\frac{1}{12}(n-1)(n-2)[2n-3+3] = \frac{n}{6}(n-1)(n-2)$

To count the number of items in Category B: Items of the form $Z_{2j}Z_{k2}$: (n - 2). 1

Items of the form
$$Z_{3j}Z_{k3}$$
: $(n-3)$. 2

... Items of the form $Z_{(n-1)j}Z_{k(n-1)}$: 1. (n - 2)

So total number of items in Category B is

$$\sum_{r=1}^{n-2} r(n-r-1) = (n-1) \cdot \frac{1}{2} (n-2)(n-1)$$
$$-\frac{1}{6} (n-2)(n-1)(2n-3)$$
$$= \frac{1}{6} (n-1)(n-2)[3n-3-(2n-3)]$$
$$= \frac{n}{6} (n-1)(n-2)$$

To count the number of items in Category C:

This will be the same as for Category A, with $^{n-1}C_2$ items of the form $Z_{in}Z_{kn}$ (with i < k) etc.

Thus the total number of items in Categories A, B & C (together) is

$$3 \times \frac{n}{6}(n-1)(n-2)$$

and each $E(Z_{ij}Z_{kl})$ for these items is $\frac{1}{36}$,
so that $VarZ = [\sum_{1 \le i < j \le n} E(Z_{ij}^{2})] + 2\sum E(Z_{ij}Z_{kl})$
 $= \frac{1}{12}(n-1)n + 2 \times 3 \times \frac{n}{6}(n-1)(n-2)(\frac{1}{36})$
 $= \frac{n}{36}(n-1)[3+n-2] = \frac{1}{36}n(n^{2}-1)$, as required.

Note: The Official Solution uses the result of (ii) more directly, by writing $Y_1 = Z_{12}$, $Y_2 = Z_{13}$, ..., $Y_m = Z_{(n-1)n}$, with $m = {}^nC_2$.

However, it doesn't explain the $n \times {}^{n-1}C_2$ appearing in the expression for $2\sum E(Y_iY_j)$ (or $2\sum E(Z_{ij}Z_{kl})$). This can be justified as follows:

As explained above, the only non-zero $E(Z_{ij}Z_{kl})$ items are the ones falling into the 3 categories mentioned. As an alternative to the 3 categories, these items can be classified according to which of the *n* possible numbers is repeated (note that it isn't possible for a number to appear more than twice, as i < j & k < l). There are then $^{n-1}C_2$ ways of choosing the other two numbers, and for each choice of the repeated number and the other 2 numbers, exactly one of the categories A, B or C must occur: Suppose, for example, that the repeated number is 4. Then the other 2 numbers will either both be less than 4, or both be greater than 4, or lie on either side of 4 (corresponding to the categories C, A & B).