STEP 2021, P2, Q9 - Solution (3 pages; 18/2/23)
(i)(a)

[It isn't immediately clear whether S will be nearer Q or R. It has been provisionally placed closer to Q.]

As the particle of mass M is in equilibrium, the resultant of the force vectors on it is zero, and so a triangle of forces can be created, as shown.

From this, $|M g|<\left|T_{1}\right|+\left|T_{2}\right|$,
Then, as $T_{1}=m_{1} g \& T_{2}=m_{2} g$ (from the equilibrium of the particles of masses m_{1} and m_{2}), $M<m_{1}+m_{2}$.

Also, as the angle between the sides $|M g|$ and $\left|T_{2}\right|$ is θ_{2}, $\left|T_{1}\right|^{2}=\left|T_{2}\right|^{2}+|M g|^{2}-2\left|T_{2}\right||M g| \cos \theta_{2}$ (by the Cosine rule) $<\left|T_{2}\right|^{2}+|M g|^{2}$, as θ_{2} is acute;
and hence $m_{1}{ }^{2}<m_{2}{ }^{2}+M^{2}$, so that $m_{1}{ }^{2}-m_{2}{ }^{2}<M^{2}$
and $\sqrt{m_{1}^{2}-m_{2}{ }^{2}}<M$
Thus $\sqrt{m_{1}{ }^{2}-m_{2}^{2}}<M<m_{1}+m_{2}$, as required.
(b) $\frac{Q S}{S R}=\frac{S P \tan \theta_{1}}{S P \tan \theta_{2}}=\frac{\tan \theta_{1}}{\tan \theta_{2}}\left(^{*}\right)$

Once again, applying the Cosine rule to the vector triangle,
$\left|T_{1}\right|^{2}=\left|T_{2}\right|^{2}+|M g|^{2}-2\left|T_{2}\right||M g| \cos \theta_{2}$
and also $\left|T_{2}\right|^{2}=\left|T_{1}\right|^{2}+|M g|^{2}-2\left|T_{1}\right||M g| \cos \theta_{1}$
Hence $m_{1}{ }^{2}=m_{2}{ }^{2}+M^{2}-2 m_{2} M \cos \theta_{2}$
and $m_{2}{ }^{2}=m_{1}{ }^{2}+M^{2}-2 m_{1} M \cos \theta_{1}$
Then $r=\frac{m_{2}{ }^{2}+M^{2}-m_{1}{ }^{2}}{m_{1}{ }^{2}+M^{2}-m_{2}{ }^{2}}=\frac{2 m_{2} M \cos \theta_{2}}{2 m_{1} M \cos \theta_{1}}=\frac{m_{2} \cos \theta_{2}}{m_{1} \cos \theta_{1}} \quad\left({ }^{* *}\right)$
By N2L horizontally (applied to the particle of mass M),
$T_{1} \sin \theta_{1}=T_{2} \sin \theta_{2}$, so that $\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{m_{2}}{m_{1}}\left({ }^{* * *}\right)$
Then, from $\left(^{*}\right), \frac{Q S}{S R}=\frac{\tan \theta_{1}}{\tan \theta_{2}}=\frac{\sin \theta_{1}}{\sin \theta_{2}} \cdot \frac{\cos \theta_{2}}{\cos \theta_{1}}=\frac{m_{2}}{m_{1}} \cdot \frac{\cos \theta_{2}}{\cos \theta_{1}}=r$, from $\left.{ }^{* *}\right)$, as required.
(ii) $1^{\text {st }}$ Part
$M^{2}=m_{1}{ }^{2}+m_{2}{ }^{2} \Rightarrow(M g)^{2}=T_{1}{ }^{2}+T_{2}{ }^{2}$
Then, from the triangle of forces, the angle between $T_{1} \& T_{2}$ is 90°, by Pythagoras. Hence $\theta_{1}+\theta_{2}=90^{\circ}$, as required.

2nd Part

$\frac{Q R}{S P}=\frac{Q S}{S P}+\frac{S R}{S P}=\tan \theta_{1}+\tan \theta_{2}$
$=\tan \theta_{1}+\tan \left(90-\theta_{1}\right)$
$=\tan \theta_{1}+\frac{1}{\tan \theta_{1}}$
Also, $\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{m_{2}}{m_{1}}$, from $\left({ }^{* * *}\right)$
so that $\frac{m_{2}}{m_{1}}=\frac{\sin \theta_{1}}{\sin \left(90-\theta_{1}\right)}=\frac{\sin \theta_{1}}{\cos \theta_{1}}=\tan \theta_{1}$
Hence $\frac{Q R}{S P}=\frac{m_{2}}{m_{1}}+\frac{m_{1}}{m_{2}}=\frac{m_{2}{ }^{2}+m_{1}{ }^{2}}{m_{1} m_{2}}=\frac{M^{2}}{m_{1} m_{2}}$

