STEP 2021, P2, Q11 - Solution (4 pages; 22/2/23)
(i) 1st Part
$P_{2}=\frac{1}{2}$ (the probability that T_{1} sits in S_{1})
$2^{\text {nd }}$ Part
$P_{3}=P\left(T_{1}\right.$ sits in $\left.S_{1}\right) \times 1$
$+P\left(T_{1}\right.$ sits in $\left.S_{2}\right) \times P\left(T_{2}\right.$ sits in $S_{1} \mid T_{1}$ sits in $\left.S_{2}\right)$
$+P\left(T_{1}\right.$ sits in $\left.S_{3}\right) \times 0$
$=\frac{1}{3}+\frac{1}{3} \times \frac{1}{2}=\frac{1}{2}$

(ii) 1st Part

If T_{1} sits in S_{k} (where $k \leq n-1$) then T_{2}, \ldots, T_{k-1} will sit in their allocated seats (for $k \geq 3$). T_{k} then has to choose their seat at random, from seats
$1, k+1, k+2, \ldots n$ (a total of $n-(k-1)=n-k+1$ seats),
and the situation is then the same as if T_{k} is the 1 st passenger arriving, and there are $n-k+1$ passengers in total;
so that $P\left(T_{n}\right.$ sits in $S_{n} \mid T_{1}$ sits in $\left.S_{k}\right)=P_{n-k+1}$
If T_{1} sits in S_{2}, then T_{2} has to choose their seat at random, from seats $1,3,4,5, \ldots n$; a total of $n-1$ seats. And, when $k=2$,
$n-k+1=n-1$.
Thus, $P\left(T_{n}\right.$ sits in $S_{n} \mid T_{1}$ sits in $\left.S_{k}\right)=P_{n-k+1}$ for $2 \leq k \leq n-1$ (with $n \geq 3$, so that $n-1 \geq 2$), as required.

$2^{\text {nd }}$ Part

$P_{n}=\sum_{k=1}^{n} P\left(T_{1}\right.$ sits in $\left.S_{k}\right) \cdot P\left(T_{n}\right.$ sits in $S_{n} \mid T_{1}$ sits in $\left.S_{k}\right)$
$=P\left(T_{1}\right.$ sits in $\left.S_{1}\right) \cdot P\left(T_{n}\right.$ sits in $S_{n} \mid T_{1}$ sits in $\left.S_{1}\right)$
$+\sum_{k=2}^{n-1} P\left(T_{1}\right.$ sits in $\left.S_{k}\right) \cdot P\left(T_{n}\right.$ sits in $S_{n} \mid T_{1}$ sits in $\left.S_{k}\right)$
$+P\left(T_{1}\right.$ sits in $\left.S_{n}\right) . P\left(T_{n}\right.$ sits in $S_{n} \mid T_{1}$ sits in $\left.S_{n}\right)$
[Note that the result proved in the $1^{\text {st }}$ Part only applies for
$2 \leq k \leq n-1]$
$=\frac{1}{n} \cdot 1+\left(\sum_{k=2}^{n-1} \frac{1}{n} \cdot P_{n-k+1}\right)+\frac{1}{n} \cdot 0$
Then, writing $r=n-k+1$,
$P_{n}=\frac{1}{n}+\frac{1}{n} \sum_{r=n-1}^{2} P_{r}$
$=\frac{1}{n}\left(1+\sum_{r=2}^{n-1} P_{r}\right)$, as required (for $n \geq 3$)

(iii) 1st Part

$P_{4}=\frac{1}{4}\left(1+P_{2}+P_{3}\right)=\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{2}\right)=\frac{1}{2}$
and $P_{5}=\frac{1}{5}\left(1+P_{2}+P_{3}+P_{4}\right)=\frac{1}{5}\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=\frac{1}{2}$
We can conjecture that $P_{n}=\frac{1}{2}$

2nd Part

Assume that $P_{k}=\frac{1}{2}($ for $k \geq 2)$
Then, from the $2^{\text {nd }}$ Part of (ii), with $k+1 \geq 3$,
$P_{k+1}=\frac{1}{k+1}\left(1+([k+1]-2)\left(\frac{1}{2}\right)\right)$
$=\frac{1}{2(k+1)}(2+k-1)=\frac{1}{2}$
So, if $P_{k}=\frac{1}{2}($ with $k \geq 2)$, then $P_{k+1}=\frac{1}{2}$
As $P_{2}=\frac{1}{2}$, it follows that $P_{3}=\frac{1}{2}, P_{4}=\frac{1}{2}, \ldots$,
and so, by the principle of induction, $P_{n}=\frac{1}{2}$ for all $n \geq 2$
(iv) [In the same way as for the $1^{\text {st }}$ Part of (ii),]
$P\left(T_{n-1}\right.$ sits in $S_{n-1} \mid T_{1}$ sits in $\left.S_{k}\right)=Q_{n-k+1}$,
provided now that $2 \leq k \leq n-2$ (with $n \geq 4$, so that $n-2 \geq 2$), Then $Q_{n}=\sum_{k=1}^{n} P\left(T_{1}\right.$ sits in $\left.S_{k}\right) \cdot P\left(T_{n-1}\right.$ sits in $S_{n-1} \mid T_{1}$ sits in $\left.S_{k}\right)$
$=P\left(T_{1}\right.$ sits in $\left.S_{1}\right) \cdot P\left(T_{n-1}\right.$ sits in $S_{n-1} \mid T_{1}$ sits in $\left.S_{1}\right)$
$+\sum_{k=2}^{n-2} P\left(T_{1}\right.$ sits in $\left.S_{k}\right) \cdot P\left(T_{n-1}\right.$ sits in $S_{n-1} \mid T_{1}$ sits in $\left.S_{k}\right)$
$+P\left(T_{1}\right.$ sits in $\left.S_{n-1}\right) \cdot P\left(T_{n-1}\right.$ sits in $S_{n-1} \mid T_{1}$ sits in $\left.S_{n-1}\right)$
$+P\left(T_{1}\right.$ sits in $\left.S_{n}\right) \cdot P\left(T_{n-1}\right.$ sits in $S_{n-1} \mid T_{1}$ sits in $\left.S_{n}\right)$
$=\frac{1}{n} \cdot 1+\left(\sum_{k=2}^{n-2} \frac{1}{n} \cdot Q_{n-k+1}\right)+\frac{1}{n} \cdot 0+\frac{1}{n} \cdot 1$
Then, writing $r=n-k+1$,
$Q_{n}=\frac{1}{n}\left(2+\sum_{r=n-1}^{3} Q_{r}\right)$
$=\frac{1}{n}\left(2+\sum_{r=3}^{n-1} Q_{r}\right)($ for $n \geq 4)$

Now, $Q_{2}=P\left(T_{1}\right.$ sits in $\left.S_{1}\right)=\frac{1}{2}$
and $Q_{3}=P\left(T_{1}\right.$ sits in $\left.S_{1}\right) \times 1$
$+P\left(T_{1}\right.$ sits in $\left.S_{2}\right) \times 0$
$+P\left(T_{1}\right.$ sits in $\left.S_{3}\right) \times 1$
$=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$

So $Q_{4}=\frac{1}{4}\left(2+Q_{3}\right)=\frac{1}{4}\left(2+\frac{2}{3}\right)=\frac{2}{3}$
and $Q_{5}=\frac{1}{5}\left(2+Q_{3}+Q_{4}\right)=\frac{1}{5}\left(2+\frac{4}{3}\right)=\frac{2}{3}$
To prove by induction that $Q_{n}=\frac{2}{3}$, for $n \geq 4$:
Assume that $Q_{k}=\frac{2}{3}$.
Then $Q_{k+1}=\frac{1}{k+1}\left(2+Q_{3}+Q_{4}+\cdots+Q_{k}\right)$
$=\frac{1}{k+1}\left(2+(k-2)\left(\frac{2}{3}\right)\right)$
$=\frac{2}{3(k+1)}(3+k-2)=\frac{2}{3}$
So, if $Q_{k}=\frac{2}{3}$, then $Q_{k+1}=\frac{2}{3}$.
As $Q_{4}=\frac{2}{3}$, it follows by the principle of induction that
$Q_{n}=\frac{2}{3}$ for $n \geq 4$
Also (as already established), $Q_{2}=\frac{1}{2}$ and $Q_{3}=\frac{2}{3}$

