STEP 2021, P2, Q11 - Solution (4 pages; 22/2/23)

(i) **1st Part** $P_{2} = \frac{1}{2} \text{ (the probability that } T_{1} \text{ sits in } S_{1} \text{)}$ **2nd Part** $P_{3} = P(T_{1} \text{ sits in } S_{1}) \times 1$ $+P(T_{1} \text{ sits in } S_{2}) \times P(T_{2} \text{ sits in } S_{1}|T_{1} \text{ sits in } S_{2})$ $+P(T_{1} \text{ sits in } S_{3}) \times 0$ $= \frac{1}{3} + \frac{1}{3} \times \frac{1}{2} = \frac{1}{2}$

(ii) 1st Part

If T_1 sits in S_k (where $k \le n - 1$) then $T_2, ..., T_{k-1}$ will sit in their allocated seats (for $k \ge 3$). T_k then has to choose their seat at random, from seats

1, k + 1, k + 2, ... n (a total of n - (k - 1) = n - k + 1 seats),

and the situation is then the same as if T_k is the 1st passenger arriving, and there are n - k + 1 passengers in total;

so that $P(T_n \text{ sits in } S_n | T_1 \text{ sits in } S_k) = P_{n-k+1}$

If T_1 sits in S_2 , then T_2 has to choose their seat at random, from seats 1, 3, 4, 5, ... n; a total of n - 1 seats. And, when k = 2,

n-k+1=n-1.

Thus, $P(T_n \text{ sits in } S_n | T_1 \text{ sits in } S_k) = P_{n-k+1}$ for $2 \le k \le n-1$ (with $n \ge 3$, so that $n-1 \ge 2$), as required.

$$P_n = \sum_{k=1}^n P(T_1 \text{ sits in } S_k) \cdot P(T_n \text{ sits in } S_n | T_1 \text{ sits in } S_k)$$

= $P(T_1 \text{ sits in } S_1) \cdot P(T_n \text{ sits in } S_n | T_1 \text{ sits in } S_1)$
+ $\sum_{k=2}^{n-1} P(T_1 \text{ sits in } S_k) \cdot P(T_n \text{ sits in } S_n | T_1 \text{ sits in } S_k)$
+ $P(T_1 \text{ sits in } S_n) \cdot P(T_n \text{ sits in } S_n | T_1 \text{ sits in } S_n)$

[Note that the result proved in the 1st Part only applies for

$$2 \le k \le n - 1]$$

= $\frac{1}{n} \cdot 1 + (\sum_{k=2}^{n-1} \frac{1}{n} \cdot P_{n-k+1}) + \frac{1}{n} \cdot 0$

Then, writing r = n - k + 1,

$$P_n = \frac{1}{n} + \frac{1}{n} \sum_{r=n-1}^{2} P_r$$

= $\frac{1}{n} (1 + \sum_{r=2}^{n-1} P_r)$, as required (for $n \ge 3$)

(iii) 1st Part

$$P_4 = \frac{1}{4}(1 + P_2 + P_3) = \frac{1}{4}\left(1 + \frac{1}{2} + \frac{1}{2}\right) = \frac{1}{2}$$

and $P_5 = \frac{1}{5}(1 + P_2 + P_3 + P_4) = \frac{1}{5}\left(1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}\right) = \frac{1}{2}$
We can conjecture that $P_n = \frac{1}{2}$

2nd Part

Assume that $P_k = \frac{1}{2}$ (for $k \ge 2$)

Then, from the 2^{nd} Part of (ii), with $k + 1 \ge 3$,

$$P_{k+1} = \frac{1}{k+1} \left(1 + ([k+1] - 2) \left(\frac{1}{2}\right) \right)$$

$$= \frac{1}{2(k+1)}(2+k-1) = \frac{1}{2}$$

So, if $P_k = \frac{1}{2}$ (with $k \ge 2$), then $P_{k+1} = \frac{1}{2}$
As $P_2 = \frac{1}{2}$, it follows that $P_3 = \frac{1}{2}$, $P_4 = \frac{1}{2}$, ...,
and so, by the principle of induction, $P_n = \frac{1}{2}$ for all $n \ge 2$

(iv) [In the same way as for the 1st Part of (ii),]

$$P(T_{n-1} \text{ sits in } S_{n-1}|T_1 \text{ sits in } S_k) = Q_{n-k+1},$$

provided now that $2 \le k \le n-2$ (with $n \ge 4$, so that $n-2 \ge 2$),
Then $Q_n = \sum_{k=1}^n P(T_1 \text{ sits in } S_k) \cdot P(T_{n-1} \text{ sits in } S_{n-1}|T_1 \text{ sits in } S_k)$
 $= P(T_1 \text{ sits in } S_1) \cdot P(T_{n-1} \text{ sits in } S_{n-1}|T_1 \text{ sits in } S_1)$
 $+ \sum_{k=2}^{n-2} P(T_1 \text{ sits in } S_k) \cdot P(T_{n-1} \text{ sits in } S_{n-1}|T_1 \text{ sits in } S_k)$
 $+ P(T_1 \text{ sits in } S_{n-1}) \cdot P(T_{n-1} \text{ sits in } S_{n-1}|T_1 \text{ sits in } S_{n-1})$
 $+ P(T_1 \text{ sits in } S_n) \cdot P(T_{n-1} \text{ sits in } S_{n-1}|T_1 \text{ sits in } S_n)$
 $= \frac{1}{n} \cdot 1 + (\sum_{k=2}^{n-2} \frac{1}{n} \cdot Q_{n-k+1}) + \frac{1}{n} \cdot 0 + \frac{1}{n} \cdot 1$
Then, writing $r = n - k + 1$,
 $Q_n = \frac{1}{n} (2 + \sum_{r=n-1}^n Q_r)$
 $= \frac{1}{n} (2 + \sum_{r=n-1}^n Q_r) \text{ (for } n \ge 4)$

Now, $Q_2 = P(T_1 \text{ sits in } S_1) = \frac{1}{2}$ and $Q_3 = P(T_1 \text{ sits in } S_1) \times 1$ $+P(T_1 \text{ sits in } S_2) \times 0$ + $P(T_1 \text{ sits in } S_3) \times 1$

$$= \frac{-}{3} + \frac{-}{3} = \frac{-}{3}$$

So
$$Q_4 = \frac{1}{4}(2 + Q_3) = \frac{1}{4}(2 + \frac{2}{3}) = \frac{2}{3}$$

and $Q_5 = \frac{1}{5}(2 + Q_3 + Q_4) = \frac{1}{5}(2 + \frac{4}{3}) = \frac{2}{3}$
To prove by induction that $Q_n = \frac{2}{3}$, for $n \ge 4$:
Assume that $Q_k = \frac{2}{3}$.
Then $Q_{k+1} = \frac{1}{k+1}(2 + Q_3 + Q_4 + \dots + Q_k)$
 $= \frac{1}{k+1}(2 + (k - 2)(\frac{2}{3}))$
 $= \frac{2}{3(k+1)}(3 + k - 2) = \frac{2}{3}$
So, if $Q_k = \frac{2}{3}$, then $Q_{k+1} = \frac{2}{3}$.
As $Q_4 = \frac{2}{3}$, it follows by the principle of induction that
 $Q_n = \frac{2}{3}$ for $n \ge 4$

Also (as already established), $Q_2 = \frac{1}{2}$ and $Q_3 = \frac{2}{3}$