STEP 2020, P3, Q12 - Solution (6 pages; 30/1/23)

(i) Part 1

X and Y are independent Geometric variables (so that eg $\left.P(X=x)=q^{x-1} p\right)$
and $P(S=s)=P(X+Y=s)=\sum_{k=1}^{s-1} P(X=k \& Y=s-k)$
$=\sum_{k=1}^{s-1} P(X=k) \cdot P(Y=s-k)$, as $X \& Y$ are independent
$=\sum_{k=1}^{s-1} q^{k-1} p \cdot q^{s-k-1} p$
$=p^{2} q^{s-2} \sum_{k=1}^{s-1} 1$
$=(s-1) p^{2} q^{s-2}($ for $s \geq 2)$

Part 2

$P(T \leq t)=1-P(T>t)$
$=1-P($ at least one of $X \& Y>t)$
$=1-[1-P($ neither X nor $Y>t)]$
$=P($ neither X nor $Y>t)$
$=P(X \leq t$ and $Y \leq t)$
$=P(X \leq t) P(Y \leq t)$, as as $X \& Y$ are independent

Now, $P(X \leq t)=\sum_{k=1}^{t} q^{k-1} p=\frac{p\left(q^{t}-1\right)}{1-q}=1-q^{t}$,
so that $P(T \leq t)=\left(1-q^{t}\right)^{2}$

And $P(T=t)=P(T \leq t)-P(T \leq t-1)$
$=\left(q^{t}-1\right)^{2}-\left(q^{t-1}-1\right)^{2}$
$=\left[\left(q^{t}-1\right)-\left(q^{t-1}-1\right)\right]\left[\left(q^{t}-1\right)+\left(q^{t-1}-1\right)\right]$
$=\left[q^{t}-q^{t-1}\right]\left[q^{t}+q^{t-1}-2\right]$
$=q^{t-1}(q-1)\left(q^{t}+q^{t-1}-2\right)$
$=q^{t-1} p\left(2-q^{t}-q^{t-1}\right)$, which is the same as the required expression

(ii) Part 1

Consider separately $U=0$ and $U \geq 1$:
$P(U=0)=\sum_{k=1}^{\infty} P(X=k$ and $Y=k)$
$=\sum_{k=1}^{\infty} P(X=k) P(Y=k)$
$=\sum_{k=1}^{\infty} q^{k-1} p \cdot q^{k-1} p$
$=\sum_{k=1}^{\infty} q^{2 k-2} p^{2}$
$=\frac{p^{2}}{1-q^{2}}=\frac{p^{2}}{(1-q)(1+q)}=\frac{p}{1+q}$

For $U \geq 1$:
$P(U=u)=P(U \neq 0)$
$\times P(2 n d$ person to obtain a Head obtains it u tosses
after the 1 st person $\mid U \neq 0)$
$=\left(1-\frac{p}{1+q}\right) q^{u-1} p$
$=\frac{(1+q-p) q^{u-1} p}{1+q}$
$=\frac{2 q \cdot q^{u-1} p}{1+q}$
$=\frac{2 q^{u} p}{1+q}$

Part 2

$P(W>w)=P(X>w$ and $Y>w)$
$=P(X>w) P(Y>w)$
So $P(W \leq w)=1-(1-P(X \leq w))(1-P(Y \leq w))$
From (i) (Part 2),
$P(X \leq w) \& P(Y \leq w)=1-q^{w}$,
so that $P(W \leq w)=1-q^{w} \cdot q^{w}=1-q^{2 w}$

Then $P(W=w)=P(W \leq w)-P(W \leq w-1)$
$=\left(1-q^{2 w}\right)-\left(1-q^{2[w-1]}\right)$
$=q^{2 w-2}-q^{2 w}$
[The Official sol'ns give $p q^{2 w-2}(1+q)$ as the answer,
and this can be rearranged as $(1-q) q^{2 w-2}(1+q)$
$=q^{2 w-2}\left(1-q^{2}\right)=q^{2 w-2}-q^{2 w}$, as above.]
(iii) $P(S=2$ and $T=3)=P(X+Y=2$ and $\max (X, Y)=3)=0$ whilst $P(S=2) \times P(T=3)$
$=(2-1) p^{2} q^{2-2} \cdot q^{3-1} p\left(2-q^{3}+q^{3-1}\right)$
$=p^{2} q^{2} p\left(2-q^{3}+q^{2}\right)$
and in general, $2-q^{3}+q^{2} \neq 0$,
so $P(S=2$ and $T=3) \neq P(S=2) \times P(T=3)$

(iv) Part 1

To show that U and W are independent, we need to establish that
$P(U=u$ and $W=w)=P(U=u) P(W=w)$
When $U=0$,
$P(U=u$ and $W=w)=P(X=Y=w)=P(X=w)(Y=w)$
$=q^{w-1} p \cdot q^{w-1} p=q^{2 w-2} p^{2}$
and $P(U=u) P(W=w)=\frac{p}{1+q}\left(q^{2 w-2}-q^{2 w}\right)$
$=\frac{p q^{2 w-2}\left(1-q^{2}\right)}{1+q}=p q^{2 w-2}(1-q)=q^{2 w-2} p^{2}$
So (${ }^{*}$) holds when $U=0$.
When $U \geq 1$,
$P(U=u$ and $W=w)=$
$=P(X=w$ and $Y=w+u O R Y=w$ and $X=w+u)$
$=P(X=w$ and $Y=w+u)+P(Y=w$ and $X=w+u)$
$=2 q^{w-1} p \cdot q^{w+u-1} p$
$=2 q^{2 w+u-2} p^{2}$
And $P(U=u) P(W=w)=\frac{2 q^{u} p}{1+q} \cdot\left(q^{2 w-2}-q^{2 w}\right)$

$$
\begin{aligned}
& =\frac{2 q^{2 w+u-2} p\left(1-q^{2}\right)}{1+q} \\
& =2 q^{2 w+u-2} p(1-q)
\end{aligned}
$$

$=2 q^{2 w+u-2} p^{2}$
So (*) holds when $U \geq 1$ as well.
Hence U and W are independent.

Part 2

From (iii), we have established that S and T are not independent. We need to show that the following pairs of variables are also not independent:
(a) S and U
(b) S and W
(c) T and U
(d) T and W

(a) S and U

$U=0$:
$P(S=s$ and $U=0)=P\left(X=\frac{s}{2} \& Y=\frac{s}{2}\right)=P\left(X=\frac{s}{2}\right) P\left(Y=\frac{s}{2}\right)$,
which is zero if s is odd;
whereas $P(S=s) P(U=0)$ is non-zero for odd s
So S and U are not independent. [No need to investigate $U \geq 1$.]

(b) S and W

$P(W=1)$ will vary with knowledge of the value of S : If $S=2$, for example, $P(W=1)=1$, as both X and Y must be 1 , and when $S \geq$ $4, P(W=1) \neq 1$ (as $X=Y=2$ is possible, for example, when $S=$ 4).

And so S and W are not independent.

(c) T and U

[T is $\operatorname{Max}(\mathrm{X}, \mathrm{Y}) ; \mathrm{U}$ is $|X-Y|]$
The knowledge that U is large increases the probability that T is large, as it rules out situations where $\mathrm{X} \& \mathrm{Y}$ are both small.

So T and U are not independent.

(d) T and W

[T is $\operatorname{Max}(\mathrm{X}, \mathrm{Y}) ; \mathrm{W}$ is $\operatorname{Min}(\mathrm{X}, \mathrm{Y})$]
If eg it is known that $T \leq 10$ (so that both $\mathrm{X} \& \mathrm{Y} \leq 10$) then
$W>10$ is not possible.
So T and W are not independent.

