STEP 2020, P2, Q9 - Solution (4 pages; 6/7/21)

1st part

Let (x, y) be the coordinates of the point of collision, where N is the Origin.
[The following approach doesn't lead anywhere:
Then, from the Cartesian form of the eq'n of a projectile, for $A: y=h-\frac{g x^{2}}{2 V^{2}}$, and for $B: y=(d-x) \tan \theta-\frac{g(d-x)^{2}}{2 U^{2} \cos ^{2} \theta}$

The resulting quadratic in x is to have one sol'n.
So $h-\frac{g x^{2}}{2 V^{2}}=(d-x) \tan \theta-\frac{g(d-x)^{2}}{2 U^{2} \cos ^{2} \theta}$,
but the expression for the discriminant is too complicated to be worth pursuing.]

If T is the time at collision, then equating the $x \& y$ coordinates for $A \& B:$
$x=V T=d-U \cos \theta . T$ (1),
and $y=h-\frac{g}{2} T^{2}=U \sin \theta \cdot T-\frac{g}{2} T^{2}$
Then $(1) \Rightarrow T(V+U \cos \theta)=d$ and $(2) \Rightarrow h=U \sin \theta . T$,
and eliminating T gives $\frac{d}{V+U \cos \theta}=\frac{h}{U \sin \theta}$,
so that $d U \sin \theta=h V+h U \cos \theta$
$\Rightarrow d \sin \theta-h \cos \theta=\frac{V h}{U}$, as required.
[This question is a good example of where writing something down (eq'n (2)), perhaps without knowing where it will lead, leads to spotting a useful device - ie that the $\frac{g}{2} T^{2}$ will cancel.]
(i) $\tan \beta=\frac{h}{d}$

From the $1^{\text {st }}$ part, $d \tan \theta-h=\frac{V h}{U} \sec \theta$
Result to prove: $\theta>\beta \Leftrightarrow \tan \theta>\tan \beta$ [as both angles are acute]
$\Leftrightarrow \tan \theta-\frac{h}{d}>0$
$\Leftrightarrow \frac{d \tan \theta-h}{d}>0[$ as $d>0]$
$\Leftrightarrow d \tan \theta-h>0[$ as $d>0]$,
which follows from (3), as each of $V, U, h \& \sec \theta$ is positive.
So we have established that $\theta>\beta$.
(ii) As the y coordinate will be positive when the collision takes place, $h-\frac{g}{2} T^{2} \geq 0$, from (2).

Then, as $h=U \sin \theta . T$ (established from (2)),
$h-\frac{g}{2}\left(\frac{h}{U \sin \theta}\right)^{2} \geq 0$
$\Rightarrow 1 \geq \frac{g h}{2 U^{2} \sin ^{2} \theta}$
$\Rightarrow U^{2} \sin ^{2} \theta \geq \frac{g h}{2}$
$\Rightarrow U \sin \theta \geq \sqrt{\frac{g h}{2}}[$ as $U \sin \theta>0]$, as required.
(iii) From the $1^{\text {st }}$ part, $d \sin \theta-h \cos \theta=\frac{V h}{U}$
$\Leftrightarrow \frac{U}{V}=\frac{h}{d \sin \theta-h \cos \theta}$
Also, $\tan \beta=\frac{h}{d}$, and so $\frac{U}{V}=\frac{\tan \beta}{\sin \theta-\tan \beta \cos \theta}=\frac{\sin \beta}{\sin \theta \cos \beta-\sin \beta \cos \theta}$
$=\frac{\sin \beta}{\sin (\theta-\beta)}>\sin \beta$, as required

- as $\sin (\theta-\beta) \leq 1$ and $\sin (\theta-\beta) \neq 1$ (otherwise $\theta-\beta=\frac{\pi}{2}$, which isn't possible, as both $\theta \& \beta$ are acute).

Final part

The vertical speed of B at the point of collision is $U \sin \theta-g T$
And the y-coordinate of the point of collision is $h-\frac{g}{2} T^{2}$, from (2).
So the result to prove is:
$h-\frac{g}{2} T^{2}>\frac{h}{2} \Leftrightarrow U \sin \theta-g T>0$
ie $\frac{h}{2}>\frac{g}{2} T^{2}$ or $T<\sqrt{\frac{h}{g}} \Leftrightarrow T<\frac{U \sin \theta}{g}$
Now $h=U \sin \theta . T$, from (2),
and so (4) can be rewritten as
$\frac{h}{U \sin \theta}<\sqrt{\frac{h}{g}} \Leftrightarrow \frac{h}{U \sin \theta}<\frac{U \sin \theta}{g}$
or $\frac{h^{2}}{U^{2} \sin ^{2} \theta}<\frac{h}{g} \Leftrightarrow g h<U^{2} \sin ^{2} \theta$ (as all the quantities are positive)
and the left-hand inequality can be seen to be equivalent to the right-hand one.

