STEP 2020, P2, Q6 - Solution (5 pages; 1/7/21)

(i) [The columns of a matrix usually have more significance than the rows, and so $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$ would generally be preferred.] $M^{2} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^{2} + bc & ab + bd \\ ac + cd & bc + d^{2} \end{pmatrix}$ and so $tr(M^{2}) = a^{2} + 2bc + d^{2}$ And $[tr(M)]^{2} - 2 \det(M) = (a + d)^{2} - 2(ad - bc)$ $= a^{2} + d^{2} + 2bc$ Thus, $tr(M^{2}) = [tr(M)]^{2} - 2 \det(M)$, as required.

(ii) 1st part

Suppose that $M^2 = I$, but $M \neq \pm I$ Then $M^{-1} = M$, so that $\frac{1}{\det(M)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ (1), so that $\frac{-c}{\det(M)} = c$, and hence either $\det(M) = -1$ or c = 0. (2) If c = 0, then $\det(M) = ad$, and so, from (1), $\frac{d}{ad} = a \Rightarrow a = \pm 1$ Also $\frac{a}{ad} = d \Rightarrow d = \pm 1$, and $\frac{-b}{ad} = b \Rightarrow$ either ad = 1 or b = 0If b = 0 (and c = 0), then (as $M \neq \pm I$), either $M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ or $M = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ In both cases, tr(M) = 0, and $\det(M) = -1$.

If
$$c \neq 0$$
, so that $det(M) = -1$ (from (2)):
 $tr(I) = [tr(M)]^2 - 2 det(M)$, from (i),
so that $[tr(M)]^2 = 2 + 2(-1) = 0$, and hence $tr(M) = 0$

Thus, if $M^2 = I$, but $M \neq \pm I$, then tr(M) = 0 and det(M) = -1.

Suppose that tr(M) = 0 and det(M) = -1, so that we can write $M = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$, and $-a^2 - bc = -1$, or $a^2 + bc = 1$ Then $M^2 = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \begin{pmatrix} a & b \\ c & -a \end{pmatrix} = \begin{pmatrix} a^2 + bc & 0 \\ 0 & a^2 + bc \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

And $M = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \neq \pm I$, as the elements on the leading diagonal cannot be equal unless a = 0, in which case $M \neq \pm I$.

Thus, if tr(M) = 0 and det(M) = -1, then $M^2 = I$, but $M \neq \pm I$.

[It doesn't matter whether we say "but" or "and".]

And so, $M^2 = I$, but $M \neq \pm I \Leftrightarrow tr(M) = 0$ and det(M) = -1, as required.

2nd part

Suppose that $M^2 = -I$.

Then
$$M^{-1} = -M$$
, so that $\frac{1}{\det(M)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = - \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ (3),

so that $\frac{-c}{\det(M)} = -c$, and hence either $\det(M) = 1$ or c = 0. (4)

If c = 0, then det(M) = ad,

and so, from (3), $\frac{d}{ad} = -a \Rightarrow a^2 = -1$, which isn't possible, as *a* is real.

So $c \neq 0$, and hence det(M) = 1. From (i), $tr(-I) = [tr(M)]^2 - 2 det(M)$, so that $[tr(M)]^2 = -2 + 2(1) = 0$, and hence tr(M) = 0Thus, if $M^2 = -I$, then tr(M) = 0 and det(M) = 1.

Suppose that tr(M) = 0 and det(M) = 1, so that we can write $M = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$, and $-a^2 - bc = 1$, or $a^2 + bc = -1$ Then $M^2 = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \begin{pmatrix} a & b \\ c & -a \end{pmatrix} = \begin{pmatrix} a^2 + bc & 0 \\ 0 & a^2 + bc \end{pmatrix}$ $= \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -I$

Thus, if tr(M) = 0 and det(M) = 1, then $M^2 = -I$.

And so, $M^2 = -I \Leftrightarrow tr(M) = 0$ and det(M) = 1, as required.

(iii) 1st part

First of all, $M^2 = \pm I \Rightarrow M^4 = I^2 = I$ or $M^4 = (-I)^2 = I$ Let $N = M^2$. Result to prove: $N^2 = I \Rightarrow N = \pm I$ Suppose that $N^2 = I$ but $N \neq \pm I$ (*) Then, from (ii), as the elements of $N = M^2$ will be real, det(N) = -1

fmng.uk

And
$$N = M^2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix}$$

So $a^2 + 2bc + d^2 = 0$
and $(a^2 + bc)(bc + d^2) - (ac + cd)(ab + bd) = -1$
 $\Rightarrow a^2bc + a^2d^2 + b^2c^2 + bcd^2 - a^2bc - 2abcd - bcd^2 = -1$
 $\Rightarrow a^2d^2 + b^2c^2 - 2abcd = -1$
 $\Rightarrow (ad - bc)^2 = -1$, which isn't possible, contradicting (*).
Hence $N^2 = I \Rightarrow N = \pm I$,
and so $M^4 = I \Leftrightarrow M^2 = \pm I$, as required.
2nd part
Let $N = M^2$ again. Then, from (ii),
 $M^4 = -I \text{ or } N^2 = -I \Leftrightarrow tr(N) = 0 \text{ and } det(N) = 1$,
ie $tr(M^2) = 0$ and $det(M^2) = 1$
Then, $det(M^2) = 1 \Leftrightarrow [det(M)]^2 = 1 \Leftrightarrow det(M) = \pm 1$,
and, from (i), $[tr(M)]^2 - 2 det(M) = 0$,
 $\Leftrightarrow [tr(M)]^2 = 2$, and $det(M) = \pm 1$ only.
Thus, the required necessary and sufficient conditions are
that $det(M) = 1$ and $tr(M) = \pm\sqrt{2}$

(iv) Let
$$M = \begin{pmatrix} \sqrt{2} & 1 \\ -1 & 0 \end{pmatrix}$$

Then det(M) = 1 and $tr(M) = \sqrt{2}$, so that, from the 2nd part of (iii), $M^4 = -I$, and hence $M^8 = I$.

M is not of the form $\begin{pmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{pmatrix}$, and so is not a rotation;

fmng.uk

and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ maps to $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, implying a reflection in y = x (were M to represent a reflection), which is contradicted by the image of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ being $\begin{pmatrix} \sqrt{2} \\ -1 \end{pmatrix}$. Thus $M = \begin{pmatrix} \sqrt{2} & 1 \\ -1 & 0 \end{pmatrix}$ is a suitable example.