STEP 2020, P2, Q6 - Solution (5 pages; 1/7/21)
(i) [The columns of a matrix usually have more significance than the rows, and so $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ would generally be preferred.]
$M^{2}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right)$
and so $\operatorname{tr}\left(M^{2}\right)=a^{2}+2 b c+d^{2}$
And $[\operatorname{tr}(M)]^{2}-2 \operatorname{det}(M)=(a+d)^{2}-2(a d-b c)$
$=a^{2}+d^{2}+2 b c$
Thus, $\operatorname{tr}\left(M^{2}\right)=[\operatorname{tr}(M)]^{2}-2 \operatorname{det}(M)$, as required.
(ii) $1^{\text {st }}$ part

Suppose that $M^{2}=I$, but $M \neq \pm I$
Then $M^{-1}=M$, so that $\frac{1}{\operatorname{det}(M)}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
so that $\frac{-c}{\operatorname{det}(M)}=c$, and hence either $\operatorname{det}(M)=-1$ or $c=0$.
If $c=0$, then $\operatorname{det}(M)=a d$,
and so, from (1), $\frac{d}{a d}=a \Rightarrow a= \pm 1$
Also $\frac{a}{a d}=d \Rightarrow d= \pm 1$,
and $\frac{-b}{a d}=b \Rightarrow$ either $a d=1$ or $b=0$
If $b=0$ (and $c=0)$, then (as $M \neq \pm I)$,
either $M=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ or $M=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$
In both cases, $\operatorname{tr}(M)=0$, and $\operatorname{det}(M)=-1$.

If $c \neq 0$, so that $\operatorname{det}(M)=-1$ (from (2)):
$\operatorname{tr}(I)=[\operatorname{tr}(M)]^{2}-2 \operatorname{det}(M)$, from (i),
so that $[\operatorname{tr}(M)]^{2}=2+2(-1)=0$, and hence $\operatorname{tr}(M)=0$

Thus, if $M^{2}=I$, but $M \neq \pm I$, then $\operatorname{tr}(M)=0$ and $\operatorname{det}(M)=-1$.

Suppose that $\operatorname{tr}(M)=0$ and $\operatorname{det}(M)=-1$, so that we can write $M=\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right)$, and $-a^{2}-b c=-1$, or $a^{2}+b c=1$

Then $M^{2}=\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right)\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right)=\left(\begin{array}{cc}a^{2}+b c & 0 \\ 0 & a^{2}+b c\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
And $M=\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right) \neq \pm I$, as the elements on the leading diagonal cannot be equal unless $a=0$, in which case $M \neq \pm I$.

Thus, if $\operatorname{tr}(M)=0$ and $\operatorname{det}(M)=-1$, then $M^{2}=I$, but $M \neq \pm I$.
[It doesn't matter whether we say "but" or "and".]
And so, $M^{2}=I$, but $M \neq \pm I \Leftrightarrow \operatorname{tr}(M)=0$ and $\operatorname{det}(M)=-1$, as required.

2nd part

Suppose that $M^{2}=-I$.
Then $M^{-1}=-M$, so that $\frac{1}{\operatorname{det}(M)}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)=-\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
so that $\frac{-c}{\operatorname{det}(M)}=-c$, and hence either $\operatorname{det}(M)=1$ or $c=0$.

If $c=0$, then $\operatorname{det}(M)=a d$,
and so, from (3), $\frac{d}{a d}=-a \Rightarrow a^{2}=-1$, which isn't possible, as a is real.

So $c \neq 0$, and hence $\operatorname{det}(M)=1$.
From (i), $\operatorname{tr}(-I)=[\operatorname{tr}(M)]^{2}-2 \operatorname{det}(M)$,
so that $[\operatorname{tr}(M)]^{2}=-2+2(1)=0$, and hence $\operatorname{tr}(M)=0$
Thus, if $M^{2}=-I$, then $\operatorname{tr}(M)=0$ and $\operatorname{det}(M)=1$.

Suppose that $\operatorname{tr}(M)=0$ and $\operatorname{det}(M)=1$,
so that we can write $M=\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right)$, and $-a^{2}-b c=1$,
or $a^{2}+b c=-1$
Then $M^{2}=\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right)\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right)=\left(\begin{array}{cc}a^{2}+b c & 0 \\ 0 & a^{2}+b c\end{array}\right)$
$=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)=-I$
Thus, if $\operatorname{tr}(M)=0$ and $\operatorname{det}(M)=1$, then $M^{2}=-I$.
And so, $M^{2}=-I \Leftrightarrow \operatorname{tr}(M)=0$ and $\operatorname{det}(M)=1$, as required.
(iii) $1^{\text {st }}$ part

First of all, $M^{2}= \pm I \Rightarrow M^{4}=I^{2}=I$ or $M^{4}=(-I)^{2}=I$
Let $N=M^{2}$. Result to prove: $N^{2}=I \Rightarrow N= \pm I$
Suppose that $N^{2}=I$ but $N \neq \pm I\left(^{*}\right)$
Then, from (ii), as the elements of $N=M^{2}$ will be real, $\operatorname{det}(N)=-1$

And $N=M^{2}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right)$
So $a^{2}+2 b c+d^{2}=0$
and $\left(a^{2}+b c\right)\left(b c+d^{2}\right)-(a c+c d)(a b+b d)=-1$
$\Rightarrow a^{2} b c+a^{2} d^{2}+b^{2} c^{2}+b c d^{2}-a^{2} b c-2 a b c d-b c d^{2}=-1$
$\Rightarrow a^{2} d^{2}+b^{2} c^{2}-2 a b c d=-1$
$\Rightarrow(a d-b c)^{2}=-1$, which isn't possible, contradicting $\left(^{*}\right)$.
Hence $N^{2}=I \Rightarrow N= \pm I$,
and so $M^{4}=I \Leftrightarrow M^{2}= \pm I$, as required.

$2^{\text {nd }}$ part

Let $N=M^{2}$ again. Then, from (ii),
$M^{4}=-I$ or $N^{2}=-I \Leftrightarrow \operatorname{tr}(N)=0$ and $\operatorname{det}(N)=1$,
ie $\operatorname{tr}\left(M^{2}\right)=0$ and $\operatorname{det}\left(M^{2}\right)=1$
Then, $\operatorname{det}\left(M^{2}\right)=1 \Leftrightarrow[\operatorname{det}(M)]^{2}=1 \Leftrightarrow \operatorname{det}(M)= \pm 1$,
and, from (i), $[\operatorname{tr}(M)]^{2}-2 \operatorname{det}(M)=0$,
$\Leftrightarrow[\operatorname{tr}(M)]^{2}=2$, and $\operatorname{det}(M)=+1$ only .
Thus, the required necessary and sufficient conditions are that $\operatorname{det}(M)=1$ and $\operatorname{tr}(M)= \pm \sqrt{2}$

$$
\text { (iv) Let } M=\left(\begin{array}{cc}
\sqrt{2} & 1 \\
-1 & 0
\end{array}\right)
$$

Then $\operatorname{det}(M)=1$ and $\operatorname{tr}(M)=\sqrt{2}$, so that, from the $2^{\text {nd }}$ part of (iii), $M^{4}=-I$, and hence $M^{8}=I$.
M is not of the form $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$, and so is not a rotation;
and $\binom{0}{1}$ maps to $\binom{1}{0}$, implying a reflection in $y=x$ (were M to represent a reflection), which is contradicted by the image of $\binom{1}{0}$ being $\binom{\sqrt{2}}{-1}$.

Thus $M=\left(\begin{array}{cc}\sqrt{2} & 1 \\ -1 & 0\end{array}\right)$ is a suitable example.

