STEP 2020, P2, Q1 - Solution (2 pages; 4/6/21)
(i) Writing $x=\frac{1}{1-u}$, so that $x-1=\frac{1-(1-u)}{1-u}=\frac{u}{1-u}$,
and $d x=(1-u)^{-2} d u$,
$I=\int \frac{1}{x^{\frac{3}{2}}(x-1)^{\frac{1}{2}}} d x=\int \frac{(1-u)^{-2}}{(1-u)^{-\frac{3}{2}}\left(\frac{u}{1-u}\right)^{\frac{1}{2}}} d u=\int u^{-\frac{1}{2}} d u=\frac{u^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}+C$
Then $x=\frac{1}{1-u} \Rightarrow 1-u=\frac{1}{x} \Rightarrow u=1-\frac{1}{x}=\frac{x-1}{x}$,
and so $I=2\left(\frac{x-1}{x}\right)^{\frac{1}{2}}+C$
(ii) Let $v=x-2$,
so that $J=\int \frac{1}{(x-2)^{\frac{3}{2}}(x+1)^{\frac{1}{2}}} d x=\int \frac{1}{v^{\frac{3}{2}}(v+3)^{\frac{1}{2}}} d v$
Then consider the substitution $v=\frac{1}{1-u}$ again,
so that $v+3=\frac{1+3(1-u)}{1-u}=\frac{4-3 u}{1-u}$ and $d v=(1-u)^{-2} d u$
Then $J=\int \frac{(1-u)^{-2}}{(1-u)^{-\frac{3}{2}\left(\frac{4-3 u}{1-u}\right)^{\frac{1}{2}}}} d u=\int(4-3 u)^{-\frac{1}{2}} d u$
$=\frac{(4-3 u)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)(-3)}+D$
As $x=v+2=\frac{1}{1-u}+2$,
$1-u=\frac{1}{x-2}$, and $u=1-\frac{1}{x-2}=\frac{x-3}{x-2}$,
so that $J=-\frac{2}{3}(4-3 u)^{\frac{1}{2}}+D$
$=-\frac{2}{3}\left(4-3\left(\frac{x-3}{x-2}\right)\right)^{\frac{1}{2}}+D$
$=-\frac{2}{3}\left(\frac{4 x-8-3 x+9}{x-2}\right)^{\frac{1}{2}}+D$
$=-\frac{2}{3}\left(\frac{x+1}{x-2}\right)^{\frac{1}{2}}+D$
(iii) $\left[\frac{\pi}{3}\right.$ suggests an integral of the form $\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x$, and we see that we obtained the integrand $(4-3 u)^{-\frac{1}{2}}$ in (ii), suggesting that the same approach in (iii) might produce an integrand of the form $\left(c-(u-d)^{2}\right)^{-\frac{1}{2}}$, if we're lucky.]

Let $v=x-1$, so that $3 x-2=3(v+1)-2=3 v+1$, and $K=\int_{2}^{\infty} \frac{1}{(x-1)(x-2)^{\frac{1}{2}}(3 x-2)^{\frac{1}{2}}} d x=\int_{1}^{\infty} \frac{1}{v(v-1)^{\frac{1}{2}}(3 v+1)^{\frac{1}{2}}} d v$ Then let $v=\frac{1}{1-u}$ once again,

But now $v-1=\frac{1-(1-u)}{1-u}=\frac{u}{1-u}$, which won't lead to the required form (a 3 term quadratic in u, arising from $v-1 \& 3 v+1$).

However, $v=\frac{2}{1-u}$ gives $v-1=\frac{2-(1-u)}{1-u}=\frac{1+u}{1-u}$,
and $3 v+1=\frac{6+(1-u)}{1-u}=\frac{7-u}{1-u}$; and $d v=2(1-u)^{-2} d u$
Also, $1-u=\frac{2}{v}$, so that $u=1-\frac{2}{v}$
Then $K=\int_{-1}^{1} \frac{2(1-u)^{-2}}{\left(\frac{2}{1-u}\right)\left(\frac{1+u}{1-u}\right)^{\frac{1}{2}}\left(\frac{7-u}{1-u}\right)^{\frac{1}{2}}} d u=\int_{-1}^{1} \frac{1}{\sqrt{(1+u)(7-u)}} d u$
And $(1+u)(7-u)=7+6 u-u^{2}=16-(u-3)^{2}$,
so that $K=\left[\arcsin \left(\frac{u-3}{4}\right)\right]_{-1}^{1}=\arcsin \left(-\frac{1}{2}\right)-\arcsin (-1)$
$=-\frac{\pi}{6}-\left(-\frac{\pi}{2}\right)=\frac{\pi}{3}$, as required.

