STEP 2020, P2, Q12 - Solution (3 pages; 1/7/21)

(i) 1st part

P(Same score is shown on both rolls) = $\sum_{i=1}^{n} \left(\frac{1}{n} + \varepsilon_i\right)^2$

 $= \frac{1}{n^2} \cdot n + \frac{2}{n} \{\sum_{i=1}^n \varepsilon_i\} + \sum_{i=1}^n \varepsilon_i^2$ Also, $\sum_{i=1}^n P(X = i) = 1$, so that $\frac{1}{n} \cdot n + \sum_{i=1}^n \varepsilon_i = 1$, and hence $\sum_{i=1}^n \varepsilon_i = 0$

Then *P*(Same score is shown on both rolls) = $\frac{1}{n} + \sum_{i=1}^{n} \varepsilon_i^2$

2nd part

For an unbiased die, each ε_i is zero, and so the corresponding probability is $\frac{1}{n}$, which is less than $\frac{1}{n} + \sum_{i=1}^{n} \varepsilon_i^2$ when not all the ε_i are equal to zero. Thus it is more likely for a biased die to show the same score on two successive rolls.

(ii) Consider n lengths x_i laid out next to each other, with

P(X = i) being the probability that a point chosen at random lies within the length x_i .

Then $P(X = i) = \frac{x_i}{L}$, where $L = \sum_{i=1}^n x_i$

Also, from (i), we can write $P(X = i) = \frac{1}{n} + \varepsilon_i$,

so that
$$\frac{x_i}{L} = \frac{1}{n} + \varepsilon_i$$
 (1)

From (i), $\sum_{i=1}^{n} \varepsilon_i^2 \ge 0$ [for want of anything better to investigate] and so, from (1), $\sum_{i=1}^{n} (\frac{x_i}{L} - \frac{1}{n})^2 \ge 0$

fmng.uk

$$\Leftrightarrow \left(\frac{1}{l^2}\sum_{i=1}^n x_i^{2}\right) - \left(\frac{2}{ln}\sum_{i=1}^n x_i\right) + \frac{n}{n^2} \ge 0$$
Writing $A = \sum_{i=1}^n x_i^2$

$$\Leftrightarrow \frac{A}{l^2} - \frac{2}{n} + \frac{1}{n} \ge 0 \Leftrightarrow \frac{A}{l^2} \ge \frac{1}{n} (2)$$
Now consider $(\sum_{i=1}^n x_i)^2 = (\sum_{i=1}^n x_i^2)$
 $+2([x_1x_2 + x_1x_3 + \dots + x_1x_n] + [x_2x_3 + x_2x_4 + \dots + x_1x_n]$
 $+ \dots + [x_{n-1}x_n])$
ie $L^2 = A + 2B$, where $B = \sum_{i=2}^n \sum_{j=1}^{i-1} x_i x_j (3)$
Result to be proved: $B \le \frac{n-1}{2n} L^2$
From (2) & (3), $\frac{L^2 - 2B}{L^2} \ge \frac{1}{n}$
 $\Leftrightarrow 1 - \frac{1}{n} \ge \frac{2B}{L^2}$
so that $B \le \frac{L^2}{2} \left(1 - \frac{1}{n}\right) = \frac{n-1}{2n} L^2$; ie the result to be proved.

[The question seems to be a bit misleading, as the comparison of the two probabilities in (i) isn't actually used.]

(iii) *P*(Same score is shown on 3 successive rolls)

$$= \sum_{i=1}^{n} \left(\frac{1}{n} + \varepsilon_{i}\right)^{3} = \sum_{i=1}^{n} \left(\frac{1}{n^{3}} + \frac{3\varepsilon_{i}}{n^{2}} + \frac{3\varepsilon_{i}^{2}}{n} + \varepsilon_{i}^{3}\right)$$
$$= \frac{1}{n^{2}} + \left(\frac{3}{n^{2}} \sum_{i=1}^{n} \varepsilon_{i}\right) + \left(\frac{3}{n} \sum_{i=1}^{n} \varepsilon_{i}^{2}\right) + \sum_{i=1}^{n} \varepsilon_{i}^{3}$$
$$= \frac{1}{n^{2}} + \left(\frac{3}{n} \sum_{i=1}^{n} \varepsilon_{i}^{2}\right) + \sum_{i=1}^{n} \varepsilon_{i}^{3} \text{, as } \sum_{i=1}^{n} \varepsilon_{i} = 0$$

For an unbiased die, each ε_i is zero, and so the probability is $\frac{1}{n^2}$.

We need to establish whether $\left(\frac{3}{n}\sum_{i=1}^{n}\varepsilon_{i}^{2}\right) + \sum_{i=1}^{n}\varepsilon_{i}^{3} \ge 0$ or ≤ 0 in all cases (the implication in the question is that one of these is true).

Now,
$$\left(\frac{3}{n}\sum_{i=1}^{n}\varepsilon_{i}^{2}\right) + \sum_{i=1}^{n}\varepsilon_{i}^{3} = \sum_{i=1}^{n}\varepsilon_{i}^{2}\left(\frac{3}{n} + \varepsilon_{i}\right)$$

and $\frac{3}{n} + \varepsilon_{i} > \frac{1}{n} + \varepsilon_{i} = P(X = i) \ge 0$

Thus $\sum_{i=1}^{n} \varepsilon_i^2 \left(\frac{3}{n} + \varepsilon_i \right) > 0$, as not all of the ε_i are zero.

Thus it is more likely for a biased die to show the same score on three successive rolls.