STEP 2020, P2, Q12 - Solution (3 pages; 1/7/21)
(i) 1st part
$P\left(\right.$ Same score is shown on both rolls) $=\sum_{i=1}^{n}\left(\frac{1}{n}+\varepsilon_{i}\right)^{2}$
$=\frac{1}{n^{2}} \cdot n+\frac{2}{n}\left\{\sum_{i=1}^{n} \varepsilon_{i}\right\}+\sum_{i=1}^{n} \varepsilon_{i}{ }^{2}$
Also, $\sum_{i=1}^{n} P(X=i)=1$, so that $\frac{1}{n} \cdot n+\sum_{i=1}^{n} \varepsilon_{i}=1$, and hence $\sum_{i=1}^{n} \varepsilon_{i}=0$

Then P (Same score is shown on both rolls) $=\frac{1}{n}+\sum_{i=1}^{n} \varepsilon_{i}{ }^{2}$

$2{ }^{\text {nd }}$ part

For an unbiased die, each ε_{i} is zero, and so the corresponding probability is $\frac{1}{n}$, which is less than $\frac{1}{n}+\sum_{i=1}^{n} \varepsilon_{i}{ }^{2}$ when not all the ε_{i} are equal to zero. Thus it is more likely for a biased die to show the same score on two successive rolls.
(ii) Consider n lengths x_{i} laid out next to each other, with $P(X=i)$ being the probability that a point chosen at random lies within the length x_{i}.
Then $P(X=i)=\frac{x_{i}}{L}$, where $L=\sum_{i=1}^{n} x_{i}$
Also, from (i), we can write $P(X=i)=\frac{1}{n}+\varepsilon_{i}$,
so that $\frac{x_{i}}{L}=\frac{1}{n}+\varepsilon_{i}$
From (i), $\sum_{i=1}^{n} \varepsilon_{i}{ }^{2} \geq 0$ [for want of anything better to investigate] and so, from (1), $\sum_{i=1}^{n}\left(\frac{x_{i}}{L}-\frac{1}{n}\right)^{2} \geq 0$
$\Leftrightarrow\left(\frac{1}{L^{2}} \sum_{i=1}^{n} x_{i}{ }^{2}\right)-\left(\frac{2}{L n} \sum_{i=1}^{n} x_{i}\right)+\frac{n}{n^{2}} \geq 0$
Writing $A=\sum_{i=1}^{n} x_{i}{ }^{2}$
$\Leftrightarrow \frac{A}{L^{2}}-\frac{2}{n}+\frac{1}{n} \geq 0 \Leftrightarrow \frac{A}{L^{2}} \geq \frac{1}{n}$
Now consider $\left(\sum_{i=1}^{n} x_{i}\right)^{2}=\left(\sum_{i=1}^{n} x_{i}{ }^{2}\right)$
$+2\left(\left[x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{1} x_{n}\right]+\left[x_{2} x_{3}+x_{2} x_{4}+\cdots+x_{1} x_{n}\right]\right.$
$\left.+\cdots+\left[x_{n-1} x_{n}\right]\right)$
ie $L^{2}=A+2 B$, where $B=\sum_{i=2}^{n} \sum_{j=1}^{i-1} x_{i} x_{j}$
Result to be proved: $B \leq \frac{n-1}{2 n} L^{2}$
From (2) \& (3), $\frac{L^{2}-2 B}{L^{2}} \geq \frac{1}{n}$
$\Leftrightarrow 1-\frac{1}{n} \geq \frac{2 B}{L^{2}}$
so that $B \leq \frac{L^{2}}{2}\left(1-\frac{1}{n}\right)=\frac{n-1}{2 n} L^{2}$; ie the result to be proved.
[The question seems to be a bit misleading, as the comparison of the two probabilities in (i) isn't actually used.]
(iii) P (Same score is shown on 3 successive rolls)
$=\sum_{i=1}^{n}\left(\frac{1}{n}+\varepsilon_{i}\right)^{3}=\sum_{i=1}^{n}\left(\frac{1}{n^{3}}+\frac{3 \varepsilon_{i}}{n^{2}}+\frac{3 \varepsilon_{i}^{2}}{n}+\varepsilon_{i}{ }^{3}\right)$
$=\frac{1}{n^{2}}+\left(\frac{3}{n^{2}} \sum_{i=1}^{n} \varepsilon_{i}\right)+\left(\frac{3}{n} \sum_{i=1}^{n} \varepsilon_{i}{ }^{2}\right)+\sum_{i=1}^{n} \varepsilon_{i}{ }^{3}$
$=\frac{1}{n^{2}}+\left(\frac{3}{n} \sum_{i=1}^{n} \varepsilon_{i}{ }^{2}\right)+\sum_{i=1}^{n} \varepsilon_{i}{ }^{3}$, as $\sum_{i=1}^{n} \varepsilon_{i}=0$
For an unbiased die, each ε_{i} is zero, and so the probability is $\frac{1}{n^{2}}$.

We need to establish whether $\left(\frac{3}{n} \sum_{i=1}^{n} \varepsilon_{i}{ }^{2}\right)+\sum_{i=1}^{n} \varepsilon_{i}{ }^{3} \geq 0$ or ≤ 0 in all cases (the implication in the question is that one of these is true).

Now, $\left(\frac{3}{n} \sum_{i=1}^{n} \varepsilon_{i}{ }^{2}\right)+\sum_{i=1}^{n} \varepsilon_{i}{ }^{3}=\sum_{i=1}^{n} \varepsilon_{i}{ }^{2}\left(\frac{3}{n}+\varepsilon_{i}\right)$
and $\frac{3}{n}+\varepsilon_{i}>\frac{1}{n}+\varepsilon_{i}=P(X=i) \geq 0$
Thus $\sum_{i=1}^{n} \varepsilon_{i}{ }^{2}\left(\frac{3}{n}+\varepsilon_{i}\right)>0$, as not all of the ε_{i} are zero.
Thus it is more likely for a biased die to show the same score on three successive rolls.

