STEP 2020, P3, Q10 - Solution (5 pages; 24/5/23)

1st Part

By N2L and Hooke's Law, $mg - \frac{(kmg)x}{a} = m\ddot{x}$,

where *x* is the extension of the spring.

Thus $\ddot{x} + \frac{kg}{a}x = g$ is the equation of motion of the particle. (*) [In the Mark Scheme, *x* is the extension below the equilibrium, and this produces the simpler equation $\ddot{x} = -\frac{kg}{a}x$]

2nd Part

The auxiliary eq'n is $\mu^2 + \frac{kg}{a} = 0$,

so that $\mu = i \sqrt{\frac{kg}{a}}$, and the Complementary Function is therefore $x = Acos\left(\sqrt{\frac{kg}{a}} t\right) + Bsin\left(\sqrt{\frac{kg}{a}} t\right)$ [standard result]

Let x = C (a constant) be the trial function for the Particular Integral.

Then, substituting into (*),

$$\frac{kg}{a}C = g$$
 , so that $C = \frac{a}{k}$,

and hence the general solution is

fmng.uk

$$x = A\cos\left(\sqrt{\frac{kg}{a}} t\right) + B\sin\left(\sqrt{\frac{kg}{a}} t\right) + \frac{a}{k}$$

When t = 0, x = a

Thus $a = A + \frac{a}{k}$, so that $A = a(1 - \frac{1}{k})$

As
$$\dot{x} = -\sqrt{\frac{kg}{a}}Asin\left(\sqrt{\frac{kg}{a}}t\right) + \sqrt{\frac{kg}{a}}Bcos\left(\sqrt{\frac{kg}{a}}t\right)$$

When t = 0, $\dot{x} = 0$,

and so
$$0 = \sqrt{\frac{kg}{a}}B$$
, and so $B = 0$

So the particular solution is

$$x = a(1 - \frac{1}{k})\cos\left(\sqrt{\frac{kg}{a}} t\right) + \frac{a}{k}$$

Thus the particle oscillates vertically [this could have been established from the Complementary Function alone].

3rd Part

The period *T* satisfies
$$\sqrt{\frac{kg}{a}} T = 2\pi$$
, so that $T = \frac{2\pi}{\sqrt{\frac{kg}{a}}}$

Then
$$\frac{2\pi}{\sqrt{\frac{kg}{a}}} = \Omega \implies \frac{kg}{a} = \Omega^2$$
, and so $kg = a\Omega^2$, as required.

[The Mark Scheme just quotes $\Omega^2 = \frac{kg}{a}$ as a standard result from the differential equation.]

Referring to the diagram above, the platform oscillates about C, with its lowest point being at D.

The forces on the particle are F (say), upwards from the platform, T upwards due to the tension in the spring, and the weight of the particle, mg.

The particle has the same acceleration \ddot{x} (upwards) as the platform.

As the platform oscillates about C, $x = b + bsin(\omega t)$, where x is

the distance of the particle above D.

and so $\dot{x} = b\omega cos(\omega t)$, and $\ddot{x} = -b\omega^2 sin(\omega t) = -\omega^2(x-b)$

Then, applying N2L to the particle:

 $F + T - mg = m\ddot{x}$

$$\Rightarrow F = -m\omega^2(x-b) - \frac{kmge}{a} + mg,$$

where *e* is the extension of the spring

(noting that *e* can be negative (with T < 0), as AB is a spring, rather than a string)

$$= mg - m(h - a - x)\Omega^2 + m\omega^2(b - x),$$

as $kg = a\Omega^2$ and h = a + e + x

So $F = mg + m\Omega^2(a + x - h) + m\omega^2(b - x)$, as required.

5th Part

If the particle remains in contact with the platform, then $F \ge 0$, ie $mg + m\Omega^2(a + x - h) + m\omega^2(b - x) \ge 0$, so that $h\Omega^2 \le g + \Omega^2(a + x) + \omega^2(b - x)$ $= \frac{a\Omega^2}{k} + \Omega^2(a + x) + \omega^2(b - x)$, and hence $h \le \frac{a}{k} + (a + x) + \frac{\omega^2}{\Omega^2}(b - x)$ $= a\left(1 + \frac{1}{k}\right) + \frac{\omega^2 b}{\Omega^2} + x(1 - \frac{\omega^2}{\Omega^2})$ (*) Then, $\omega < \Omega \Rightarrow 1 - \frac{\omega^2}{\Omega^2} > 0$. Also $x \ge 0$ So the smallest upper bound for h (when x = 0) is $a\left(1 + \frac{1}{k}\right) + \frac{\omega^2 b}{\Omega^2}$

ie
$$h \le a\left(1 + \frac{1}{k}\right) + \frac{\omega^2 b}{\Omega^2}$$
, as required.

6th Part

When $\omega > \Omega$, $1 - \frac{\omega^2}{\Omega^2} < 0$. Also $x \le 2b$.

So the smallest upper bound for *h* (when x = 2b) is

$$a\left(1+\frac{1}{k}\right) + \frac{\omega^{2}b}{\Omega^{2}} + 2b\left(1-\frac{\omega^{2}}{\Omega^{2}}\right) = a\left(1+\frac{1}{k}\right) + 2b - \frac{\omega^{2}b}{\Omega^{2}};$$

ie $h \le a\left(1+\frac{1}{k}\right) + 2b - \frac{\omega^{2}b}{\Omega^{2}}$

7th Part

When
$$\omega = \Omega$$
, $h \le a\left(1 + \frac{1}{k}\right) + \frac{\omega^2 b}{\Omega^2} + x\left(1 - \frac{\omega^2}{\Omega^2}\right)$ (from (*)),
so that $h \le a\left(1 + \frac{1}{k}\right) + b$

Writing $\lambda = \frac{\omega^2}{\Omega^2}$, the upper bound for h, $H(\lambda)$ say, satisfies: $H(\lambda) = a\left(1 + \frac{1}{k}\right) + \lambda b$ when $\omega < \Omega$; ie when $\lambda < 1$, $H(\lambda) = a\left(1 + \frac{1}{k}\right) + b$ when $\omega = \Omega$; ie when $\lambda = 1$, and $H(\lambda) = a\left(1 + \frac{1}{k}\right) + 2b - \lambda b$ when $\omega > \Omega$; ie when $\lambda > 1$ Hence, for all values of ω , the upper bound for h doesn't exceed $a\left(1 + \frac{1}{k}\right) + b$, and so $h \le a\left(1 + \frac{1}{k}\right) + b$

[Of course, when $\omega \neq \Omega$ a smaller upper bound for *h* applies – dependent on ω .]