STEP 2020, P3, Q10 - Solution (5 pages; 24/5/23)

1st Part

By N2L and Hooke's Law, $m g-\frac{(k m g) x}{a}=m \ddot{x}$,
where x is the extension of the spring.
Thus $\ddot{x}+\frac{k g}{a} x=g$ is the equation of motion of the particle. (*)
[In the Mark Scheme, x is the extension below the equilibrium, and this produces the simpler equation $\left.\ddot{x}=-\frac{k g}{a} x\right]$

2nd Part

The auxiliary eq' n is $\mu^{2}+\frac{k g}{a}=0$,
so that $\mu=i \sqrt{\frac{k g}{a}}$, and the Complementary Function is therefore $x=A \cos \left(\sqrt{\frac{k g}{a}} t\right)+B \sin \left(\sqrt{\frac{k g}{a}} t\right)$ [standard result]

Let $x=C$ (a constant) be the trial function for the Particular Integral.

Then, substituting into (*),
$\frac{k g}{a} C=g$, so that $C=\frac{a}{k^{\prime}}$
and hence the general solution is
$x=A \cos \left(\sqrt{\frac{k g}{a}} t\right)+B \sin \left(\sqrt{\frac{k g}{a}} t\right)+\frac{a}{k}$
When $t=0, x=a$
Thus $a=A+\frac{a}{k}$, so that $A=a\left(1-\frac{1}{k}\right)$
As $\dot{x}=-\sqrt{\frac{k g}{a}} A \sin \left(\sqrt{\frac{k g}{a}} t\right)+\sqrt{\frac{k g}{a}} B \cos \left(\sqrt{\frac{k g}{a}} t\right)$
When $t=0, \dot{x}=0$,
and so $0=\sqrt{\frac{k g}{a}} B$, and so $B=0$
So the particular solution is
$x=a\left(1-\frac{1}{k}\right) \cos \left(\sqrt{\frac{k g}{a}} t\right)+\frac{a}{k}$
Thus the particle oscillates vertically [this could have been
established from the Complementary Function alone].

3rd Part

The period T satisfies $\sqrt{\frac{k g}{a}} T=2 \pi$, so that $T=\frac{2 \pi}{\sqrt{\frac{k g}{a}}}$
Then $\frac{2 \pi}{\sqrt{\frac{k g}{a}}}=\Omega \Rightarrow \frac{k g}{a}=\Omega^{2}$, and so $k g=a \Omega^{2}$, as required.
[The Mark Scheme just quotes $\Omega^{2}=\frac{k g}{a}$ as a standard result from the differential equation.]
$4^{\text {th }}$ Part

Referring to the diagram above, the platform oscillates about C , with its lowest point being at D .

The forces on the particle are F (say), upwards from the platform, T upwards due to the tension in the spring, and the weight of the particle, $m g$.

The particle has the same acceleration \ddot{x} (upwards) as the platform.

As the platform oscillates about $\mathrm{C}, x=b+b \sin (\omega t)$, where x is the distance of the particle above D.

$$
\text { and so } \dot{x}=b \omega \cos (\omega t) \text {, and } \ddot{x}=-b \omega^{2} \sin (\omega t)=-\omega^{2}(x-b)
$$

Then, applying N2L to the particle:
$F+T-m g=m \ddot{x}$
$\Rightarrow F=-m \omega^{2}(x-b)-\frac{k m g e}{a}+m g$,
where e is the extension of the spring
(noting that e can be negative (with $T<0$), as AB is a spring, rather than a string)
$=m g-m(h-a-x) \Omega^{2}+m \omega^{2}(b-x)$,
as $k g=a \Omega^{2}$ and $h=a+e+x$
So $F=m g+m \Omega^{2}(a+x-h)+m \omega^{2}(b-x)$, as required.

5th Part

If the particle remains in contact with the platform, then $F \geq 0$,
ie $m g+m \Omega^{2}(a+x-h)+m \omega^{2}(b-x) \geq 0$,
so that $h \Omega^{2} \leq g+\Omega^{2}(a+x)+\omega^{2}(b-x)$
$=\frac{a \Omega^{2}}{k}+\Omega^{2}(a+x)+\omega^{2}(b-x)$,
and hence $h \leq \frac{a}{k}+(a+x)+\frac{\omega^{2}}{\Omega^{2}}(b-x)$
$=a\left(1+\frac{1}{k}\right)+\frac{\omega^{2} b}{\Omega^{2}}+x\left(1-\frac{\omega^{2}}{\Omega^{2}}\right)$
Then, $\omega<\Omega \Rightarrow 1-\frac{\omega^{2}}{\Omega^{2}}>0$. Also $x \geq 0$
So the smallest upper bound for $h($ when $x=0)$ is $a\left(1+\frac{1}{k}\right)+\frac{\omega^{2} b}{\Omega^{2}}$
ie $h \leq a\left(1+\frac{1}{k}\right)+\frac{\omega^{2} b}{\Omega^{2}}$, as required.

6 ${ }^{\text {th }}$ Part

When $\omega>\Omega, 1-\frac{\omega^{2}}{\Omega^{2}}<0$. Also $x \leq 2 b$.
So the smallest upper bound for h (when $x=2 b$) is
$a\left(1+\frac{1}{k}\right)+\frac{\omega^{2} b}{\Omega^{2}}+2 b\left(1-\frac{\omega^{2}}{\Omega^{2}}\right)=a\left(1+\frac{1}{k}\right)+2 b-\frac{\omega^{2} b}{\Omega^{2}} ;$
ie $h \leq a\left(1+\frac{1}{k}\right)+2 b-\frac{\omega^{2} b}{\Omega^{2}}$

7th Part

When $\omega=\Omega$, $h \leq a\left(1+\frac{1}{k}\right)+\frac{\omega^{2} b}{\Omega^{2}}+x\left(1-\frac{\omega^{2}}{\Omega^{2}}\right) \quad\left(\right.$ from $\left.\left({ }^{*}\right)\right)$,
so that $h \leq a\left(1+\frac{1}{k}\right)+b$
Writing $\lambda=\frac{\omega^{2}}{\Omega^{2}}$, the upper bound for $h, H(\lambda)$ say, satisfies:
$H(\lambda)=a\left(1+\frac{1}{k}\right)+\lambda b \quad$ when $\omega<\Omega$; ie when $\lambda<1$,
$H(\lambda)=a\left(1+\frac{1}{k}\right)+b \quad$ when $\omega=\Omega$; ie when $\lambda=1$,
and $H(\lambda)=a\left(1+\frac{1}{k}\right)+2 b-\lambda b \quad$ when $\omega>\Omega$; ie when $\lambda>1$
Hence, for all values of ω, the upper bound for h doesn't exceed $a\left(1+\frac{1}{k}\right)+b$, and so $h \leq a\left(1+\frac{1}{k}\right)+b$
[Of course, when $\omega \neq \Omega$ a smaller upper bound for h applies dependent on ω.]

