STEP 2019, P3, Q9 - Solution (3 pages; 22/7/20)
(i) 1st part

Referring to the diagram, $\underline{r}=(a \sin \theta-s) \underline{i}+a \cos \theta \underline{j}$

2nd part

$\underline{\underline{r}}=(a \cos \theta \cdot \dot{\theta}-\dot{s}) \underline{i}-a \sin \theta \cdot \dot{\theta} \underline{j}$
or $(a \dot{\theta} \cos \theta-\dot{s}) \underline{i}-a \dot{\theta} \sin \theta \underline{j}$, as required.

3rd part

By conservation of momentum in the \underline{i} direction (assuming that the impulse causing the displacement is negligible)
[There is an external force (gravity) acting in the (negative) $\underset{\sim}{j}$ direction, so that there is no conservation of momentum.]
$M(-\dot{s})+m(a \dot{\theta} \cos \theta-\dot{s})=0$
$\Rightarrow m a \dot{\theta} \cos \theta=\dot{s}(M+m)$
$\Rightarrow \dot{s}=\frac{m}{m+M} a \dot{\theta} \cos \theta=(1-k) a \dot{\theta} \cos \theta$,
where $k=\frac{M}{m+M}$, as required.

4th part

So $\underline{\underline{r}}=(a \dot{\theta} \cos \theta-\dot{s}) \underline{i}-a \dot{\theta} \sin \theta \underline{j}$
$=(a \dot{\theta} \cos \theta-(1-k) a \dot{\theta} \cos \theta) \underline{i}-a \dot{\theta} \sin \theta \underline{j}$
$=a \dot{\theta}(k \cos \theta \underline{i}-\sin \theta \underline{j})$, as required.
(ii) By conservation of energy, increase in $\mathrm{KE}=$ reduction in PE (of particle),
so that $\frac{1}{2} M \dot{s}^{2}+\frac{1}{2} m|\underline{\dot{r}}|^{2}=m g a(1-\cos \theta)$
$\Rightarrow M[(1-k) a \dot{\theta} \cos \theta]^{2}+m(a \dot{\theta})^{2}\left[(k \cos \theta)^{2}+(-\sin \theta)^{2}\right]$
$=2 m g a(1-\cos \theta)$
$\Rightarrow a \dot{\theta}^{2}\left\{\frac{M}{m}(1-k)^{2} \cos ^{2} \theta+k^{2} \cos ^{2} \theta+\sin ^{2} \theta\right\}$
$=2 g(1-\cos \theta)$
Now, $k=\frac{M}{m+M}=\frac{1}{\left(\frac{m}{M}\right)+1}$, so that $\frac{m}{M}+1=\frac{1}{k}$
and $\frac{m}{M}=\frac{1-k}{k}$, so that $\frac{M}{m}=\frac{k}{1-k}$
and hence $\frac{M}{m}(1-k)^{2}+k^{2}=k(1-k)+k^{2}=k$
Then $(A) \Rightarrow a \dot{\theta}^{2}\left(k \cos ^{2} \theta+\sin ^{2} \theta\right)=2 g(1-\cos \theta)$, as required.

(iii) 1st part

[The suggested approach of considering the component of $\underline{\ddot{r}}$ parallel to the vector $\sin \theta \underline{i}+k \cos \theta \underline{j}$ is arguably more of a hindrance than a help. $\ddot{\underline{r}}=-g \underline{j}$ is the key idea, and it isn't
necessary to consider the component). Also, there is no explanation in the official sol'n as to why considering this component might be a good idea (it just happens to give the required result). The vector $\sin \theta \underline{i}+k \cos \theta \underline{j}$ is perpendicular to $\underline{\underline{r}}$, but it isn't obvious why this is relevant (if it is).]
$\underline{\underline{r}}=a \dot{\theta}(k \cos \theta \underline{i}-\sin \theta \underline{j})$
$\Rightarrow \underline{\ddot{i}}=a \ddot{\theta}(k \cos \theta \underline{i}-\sin \theta \underline{j})+a \dot{\theta}(-k \sin \theta \cdot \dot{\theta} \underline{i}-\cos \theta \cdot \dot{\theta} j \underline{j})$
When the particle loses contact, $\underset{\ddot{i}}{ }=-g \underline{j}$
$\Rightarrow a \ddot{\theta} k \cos \alpha-a \dot{\theta}^{2} k \sin \alpha=0$
$\Rightarrow \ddot{\theta} \cos \alpha-\dot{\theta}^{2} \sin \alpha=0$
and $a \ddot{\theta} \sin \alpha+a \dot{\theta}^{2} \cos \alpha=g$
Eliminating $\ddot{\theta}, a\left(\frac{\dot{\theta}^{2} \sin \alpha}{\cos \alpha}\right) \sin \alpha+a \dot{\theta}^{2} \cos \alpha=g$
$\Rightarrow a \dot{\theta}^{2}\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)=g \cos \alpha$
$\Rightarrow a \dot{\theta}^{2}=g \cos \alpha$, as required.

2nd part

Substituting for $a \dot{\theta}^{2}$ in the result shown in (ii),
$g \cos \alpha\left(k \cos ^{2} \alpha+\sin ^{2} \alpha\right)=2 g(1-\cos \alpha)$,
$\Rightarrow k \cos ^{3} \alpha+\cos \alpha\left(1-\cos ^{2} \alpha\right)-2+2 \cos \alpha=0$
$\Rightarrow(k-1) \cos ^{3} \alpha+3 \cos \alpha-2=0$

3rd part

$\Rightarrow 3 \cos \alpha-2=(1-k) \cos ^{3} \alpha>0\left(\right.$ as $\left.\alpha<\frac{\pi}{2}\right)$
$\Rightarrow \cos \alpha>\frac{2}{3}$, as required.

