STEP 2019, P3, Q5 - Solution (3 pages; 21/7/20)

[Note the Erratum at the start of the paper.]
(i) $f(0)=0$ and $f(x) \rightarrow 1^{-}$as $x \rightarrow \infty$

$$
\begin{aligned}
& f(x)=\frac{x}{\sqrt{x^{2}+p}} \Rightarrow f^{\prime}(x)=\frac{\sqrt{x^{2}+p}-x \cdot \frac{1}{2}\left(x^{2}+p\right)^{-\frac{1}{2}} \cdot 2 x}{x^{2}+p} \\
& =\frac{\left(x^{2}+p\right)-x^{2}}{\left(x^{2}+p\right)^{\frac{3}{2}}}=\frac{p}{\left(x^{2}+p\right)^{\frac{3}{2}}}>0 \text { for } x \geq 0
\end{aligned}
$$

And $f^{\prime \prime}(x)=p\left(-\frac{3}{2}\right)\left(x^{2}+p\right)^{-\frac{5}{2}}(2 x)<0$ for $x>0$

(ii) 1st part

If $y=\frac{c x}{\sqrt{x^{2}+p}}$, then $\frac{d y}{d x}=\frac{c p}{\left(x^{2}+p\right)^{\frac{3}{2}}}$, from (i)
And $y^{2}=\frac{c^{2} x^{2}}{x^{2}+p}$, so that $b^{2}-y^{2}=\frac{b^{2}\left(x^{2}+p\right)-c^{2} x^{2}}{x^{2}+p}$
and $c^{2}-y^{2}=\frac{c^{2}\left(x^{2}+p\right)-c^{2} x^{2}}{x^{2}+p}=\frac{c^{2} p}{x^{2}+p}$
Then $I=\int \frac{1}{\left(\frac{b^{2}\left(x^{2}+p\right)-c^{2} x^{2}}{x^{2}+p}\right) \sqrt{\frac{c^{2} p}{x^{2}+p}}} \frac{c p}{\left(x^{2}+p\right)^{\frac{3}{2}}} d x$
$=\int \frac{\sqrt{p}}{b^{2}\left(x^{2}+p\right)-c^{2} x^{2}} d x$

And if $p=1, I=\int \frac{1}{b^{2}+\left(b^{2}-c^{2}\right) x^{2}} d x$, as required.

2nd part

Let $b=\sqrt{3} \& c=\sqrt{2}$
Then, with the substitution $y=\frac{x \sqrt{2}}{\sqrt{x^{2}+1}}$,
$y=1 \Rightarrow x^{2}+1=2 x^{2}$, so that $x=1$ (rejecting the spurious sol'n $x=-1$, as it doesn't give the correct value for y)
and $y=\sqrt{2} \Rightarrow x^{2}+1=x^{2}$, so that $x=\infty$,
and $J=\int_{1}^{\sqrt{2}} \frac{1}{\left(3-y^{2}\right) \sqrt{2-y^{2}}} d y$ becomes $\int_{1}^{\infty} \frac{1}{3+(3-2) x^{2}} d x$, from the 1st part

Hence $J=\frac{1}{\sqrt{3}}\left[\tan ^{-1} \frac{x}{\sqrt{3}}\right]_{1}^{\infty}=\frac{1}{\sqrt{3}}\left(\frac{\pi}{2}-\frac{\pi}{6}\right)=\frac{\pi}{3 \sqrt{3}}$

3rd part

Let $z=\frac{1}{y}$, so that $d z=-\frac{1}{y^{2}} d y$
[noting that the limits of integration will become the limits of the previous integral reversed]

Then $\int_{\frac{1}{\sqrt{2}}}^{1} \frac{y}{\left(3 y^{2}-1\right) \sqrt{2 y^{2}-1}} d y=\int_{\sqrt{2}}^{1} \frac{\left(\frac{1}{z}\right)}{\left(\frac{3}{z^{2}}-1\right) \sqrt{\frac{2}{z^{2}}-1}}\left(-\frac{1}{z^{2}}\right) d z$
$=\int_{1}^{\sqrt{2}} \frac{1}{\left(3-z^{2}\right) \sqrt{2-z^{2}}} d z=\frac{\pi}{3 \sqrt{3}}$, from the 2nd part.
(iii) We could try a substitution of the form $y=\frac{c x}{\sqrt{x^{2}+p}}$

Then $y^{2}=\frac{c^{2} x^{2}}{x^{2}+p}$ and $2 y^{2}-1=\frac{2 c^{2} x^{2}-\left(x^{2}+p\right)}{x^{2}+p}=\frac{\left(2 c^{2}-1\right) x^{2}-p}{x^{2}+p}$

The corresponding expression in the 1 st part was $\frac{c^{2} p}{x^{2}+p}$, and this had to be positive, in order for the square root to be defined.

So we could try setting $c=\frac{1}{\sqrt{2}} \& p=-1$
Then $3 y^{2}-1=\frac{\frac{3}{2} x^{2}-\left(x^{2}-1\right)}{x^{2}-1}=\frac{\frac{1}{2} x^{2}+1}{x^{2}-1}$
When $y=\frac{1}{\sqrt{2}}, \frac{1}{2}=\frac{\frac{1}{2} x^{2}}{x^{2}-1} \Rightarrow x^{2}-1=x^{2} \Rightarrow x=\infty$
When $y=1,1=\frac{\frac{1}{2} x^{2}}{x^{2}-1} \Rightarrow x^{2}-1=\frac{1}{2} x^{2} \Rightarrow x=\sqrt{2}(x=-\sqrt{2}$ is rejected, as it gives $y=-1$)

From (i), $\frac{d y}{d x}=\frac{-\left(\frac{1}{\sqrt{2}}\right)}{\left(x^{2}-1\right)^{\frac{3}{2}}}$, so that $\int_{\frac{1}{\sqrt{2}}}^{1} \frac{1}{\left(3 y^{2}-1\right) \sqrt{2 y^{2}-1}} d y$
$=\int_{\infty}^{\sqrt{2}} \frac{1}{\left(\frac{\frac{1}{2} x^{2}+1}{x^{2}-1}\right) \sqrt{\frac{1}{x^{2}-1}}} \frac{-\left(\frac{1}{\sqrt{2}}\right)}{\left(x^{2}-1\right)^{\frac{3}{2}}} d x$
$=\frac{1}{\sqrt{2}} \int_{\sqrt{2}}^{\infty} \frac{1}{\left(\frac{1}{2} x^{2}+1\right)} d x$
$=\sqrt{2}\left[\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)\right]_{\sqrt{2}}^{\infty}$
$=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}$

