STEP 2019, P3, Q12 - Solution (3 pages; 23/7/20) initial part

Considering each of the integers 1 to n in turn, either it is included in a particular subset, or it isn't; ie there are 2 choices, made n times; giving 2^{n} possibilities.
(i) $\frac{1}{2}$: For a given subset, the integer 1 is equally likely to be included or excluded. [Alternatively, $\frac{\text { no. of subsets that include } 1}{\text { total no. of subsets }}$ $=\frac{\text { total no. of subsets formed from the integers } 1 \text { to } n-1(\text { to go with } 1)}{2^{n}}$ $\left.=\frac{2^{n-1}}{2^{n}}=\frac{1}{2}\right]$

(ii) 1st part

$\mathrm{P}\left(A_{1} \cap A_{2}=\varnothing\right)$
$=P\left(A_{1} \& A_{2}\right.$ don't both contain the integer 1$)$
$\times P\left(A_{1} \& A_{2}\right.$ don't both contain $2 \mid$ they don't both contain 1$)$
$\times P\left(A_{1} \& A_{2}\right.$ don't both contain $3 \mid$ they don't both contain $\left.1 \& 2\right) \ldots$
$=P\left(A_{1} \& A_{2}\right.$ don't both contain 1$)$
$\times P\left(A_{1} \& A_{2}\right.$ don't both contain 2)
$\times P\left(A_{1} \& A_{2}\right.$ don't both contain 3$)$...
(the number of subsets containing the integer 2 and the integer 1 equals the number of subsets containing the integer 2 , but not containing the integer 1)
$=\left[P\left(A_{1} \& A_{2} \text { don't both contain } 1\right)\right]^{n}$
$=\left[1-P\left(A_{1} \text { doesn't contain } 1\right) \times P\left(A_{2} \text { doesn't contain } 1\right)\right]^{n}$ (as $A_{1} \& A_{2}$ are independent)
$=\left[1-P\left(1 \in A_{1}\right)^{2}\right]^{n}$
$=\left(1-\frac{1}{4}\right)^{n}=\left(\frac{3}{4}\right)^{n}$, as required.

2nd part

$\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}=\emptyset\right)=\left[1-P\left(1 \in A_{1}\right)^{3}\right]^{n}$
$=\left(1-\frac{1}{8}\right)^{n}=\left(\frac{7}{8}\right)^{n}$

3rd part

$\mathrm{P}\left(A_{1} \cap A_{2} \cap \ldots \cap A_{m}=\varnothing\right)=\left[1-P\left(1 \in A_{1}\right)^{m}\right]^{n}$
$=\left(1-\frac{1}{2^{m}}\right)^{n}$

(iii) 1st part

The following table shows which events are consistent with $A_{1} \subseteq A_{2}:$

	$1 \in A_{1}$	$1 \notin A_{1}$
$1 \in A_{2}$	Yes	Yes
$1 \notin A_{2}$	No	Yes

So $P\left(A_{1} \subseteq A_{2}\right)=\left[1-P\left(1 \in A_{1}\right) P\left(1 \notin A_{2}\right)\right]^{n}$
$=\left[1-\frac{1}{2} \cdot \frac{1}{2}\right]^{n}$
$=\left(\frac{3}{4}\right)^{n}$

2nd part

The events that are consistent with $A_{1} \subseteq A_{2} \subseteq A_{3}$ are:
$1 \in A_{1}$ and $1 \in A_{2}$ and $1 \in A_{3}$
$1 \notin A_{1}$ and $1 \in A_{2}$ and $1 \in A_{3}$
$1 \notin A_{1}$ and $1 \notin A_{2}$ and $1 \in A_{3}$
$1 \notin A_{1}$ and $1 \notin A_{2}$ and $1 \notin A_{3}$
[It is possible to list the events that aren't consistent with
$A_{1} \subseteq A_{2} \subseteq A_{3}$ (ie the method of the 1 st part), but it isn't as easy to extend the method to the case involving A_{m}.]

These events are mutually exclusive and each has probability $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}$
So $P\left(A_{1} \subseteq A_{2} \subseteq A_{3}\right)=\left[\frac{4}{8}\right]^{n}=\frac{1}{2^{n}}$

3rd part

Extending the 2nd part, there are $m+1$ mutually exclusive events that are consistent with $A_{1} \subseteq A_{2} \subseteq \ldots \subseteq A_{m}$, and each of these has probability $\left(\frac{1}{2}\right)^{m}$
So $P\left(A_{1} \subseteq A_{2} \subseteq \ldots \subseteq A_{m}\right)=\left[\frac{m+1}{2^{m}}\right]^{n}$ or $\frac{(m+1)^{n}}{2^{m n}}$

