STEP 2019, P3, Q11 - Solution (3 pages; 5/2/21)
(i) $P(r$ customers take sand $)$
$=\sum_{k=r}^{\infty} P(k$ customers $) P(r$ take sand $\mid k$ customers $)$
$=\sum_{k=r}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{k!}\binom{k}{r} p^{r}(1-p)^{k-r}$
$=e^{-\lambda} p^{r} \sum_{k=r}^{\infty} \frac{\lambda^{k}}{k!} \frac{k!}{r!(k-r)!}(1-p)^{k-r}$
writing $i=k-r$
$=\frac{e^{-\lambda} p^{r} \lambda^{r}}{r!} \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!}(1-p)^{i}$
$=\frac{e^{-\lambda} p^{r} \lambda^{r}}{r!} e^{\lambda(1-p)}$
$=\frac{e^{-p \lambda}(p \lambda)^{r}}{r!}$,
which is the Poisson probability for a variable with a mean of $p \lambda$ Also, the conditions for a Poisson variable are met (given that the number of customers meets these conditions):

- events are random and independent, and are rare and occur singly
- constant parameter $p \lambda$
(ii)

customer	takes	left
1	$k S$	$S-k S=(1-k) S$
2	$k(1-k) S$	$(1-k) S-k(1-k) S=(1-k)^{2} S$
3	$k(1-k)^{2} S$	$(1-k)^{2} S-k(1-k)^{2} S=(1-k)^{3} S$

The total amount taken if there are r customers who take the sand is $k S+k(1-k) S+k(1-k)^{2} S+\cdots+k(1-k)^{r-1} S$
$=\frac{k S\left[1-(1-k)^{r}\right]}{1-(1-k)}=S\left[1-(1-k)^{r}\right]$
(and note that this is valid for $r=0$)
[but as the denominator is k, this only applies if $k \neq 0$]
Then the expected total amount taken is
$\sum_{r=0}^{\infty} e^{-p \lambda} \frac{(p \lambda)^{r}}{r!} S\left[1-(1-k)^{r}\right]$
$=S .1-S \sum_{r=0}^{\infty} e^{-p \lambda} \frac{(p \lambda[1-k])^{r}}{r!}$
$=S-S e^{-k p \lambda} \sum_{r=0}^{\infty} e^{-p \lambda+k p \lambda} \frac{(p \lambda[1-k])^{r}}{r!}$
$=S-S e^{-k p \lambda} \sum_{r=0}^{\infty} e^{-p \lambda(1-k) \frac{(p \lambda[1-k])^{r}}{r!}}$
$=S-S e^{-k p \lambda} .1$
$=\left(1-e^{-k p \lambda}\right) S$, as required
[If $k=0$, then no sand is taken, and the formula gives the correct value.]

(iii) $1^{\text {st }}$ part

If there are r customers during the day who take the free sand, then (from the table in (ii)) the amount of sand left, before the assistant takes his share, is $(1-k)^{r} S$.

Then Prob(assistant takes golden grain) $=\frac{k(1-k)^{r} S}{S}=k(1-k)^{r}$
So required prob.
$=\sum_{r=0}^{\infty} e^{-p \lambda} \frac{(p \lambda)^{r}}{r!} \cdot k(1-k)^{r}$
$=k e^{-k p \lambda} \sum_{r=0}^{\infty} e^{-p \lambda(1-k)} \frac{(p \lambda[1-k])^{r}}{r!}$
$=k e^{-k p \lambda}$

2nd part

If $k=0$, no one takes any sand (including the assistant), and the required prob. is zero. This agrees with the formula $k e^{-k p \lambda}$, and $k=0$ doesn't invalidate the derivation of the formula.

3rd part

As $k \rightarrow 1$, it becomes increasingly likely that one of the customers will have taken the golden grain, and the required prob. $k e^{-k p \lambda}$ tends to the probability that no customers take any sand; ie $e^{-p \lambda}$

4th part

Let $p(k)=k e^{-k p \lambda}$
Then $p^{\prime}(k)=e^{-k p \lambda}-k p \lambda e^{-k p \lambda}$
and $p^{\prime}(k)=0$ when $1-k p \lambda=0$;
ie when $k=\frac{1}{p \lambda}\left(\right.$ as $\left.p \lambda>1, \frac{1}{p \lambda}<1\right)$
To confirm that $p(k)$ is maximised at this value,
$p^{\prime \prime}(k)=-p \lambda e^{-k p \lambda}-p \lambda p^{\prime}(k)$
$=-p \lambda e^{-k p \lambda}-p \lambda\left(e^{-k p \lambda}-k p \lambda e^{-k p \lambda}\right)$
$=e^{-k p \lambda}\left(-2 p \lambda+(p \lambda)^{2} k\right)$
and $p^{\prime \prime}\left(\frac{1}{p \lambda}\right)=e^{-1}(-2 p \lambda+p \lambda)=-p \lambda e^{-1}<0$
[There are several 'typos' in the official Hints and Mark scheme, where a k is missing from the amount that the merchant's assistant takes.]

