STEP 2019, P2, Q7 - Solution (4 pages; 23/3/22)
(i) 1st part
$\underline{a}+\underline{b}+\underline{c}=\underline{0}$
Taking the scalar product of both sides, with $\underline{a}, \underline{b} \& \underline{c}$ in turn,
$1+\underline{a} \cdot \underline{b}+\underline{a} \cdot \underline{c}=0$
$\underline{a} \cdot \underline{b}+1+\underline{b} \cdot \underline{c}=0$
$\underline{a} \cdot \underline{c}+\underline{b} \cdot \underline{c}+1=0$
Writing $x=\underline{a} \cdot \underline{b}, y=\underline{a} \cdot \underline{c} \& z=\underline{b} \cdot \underline{c}$,
$1+x+y=0$
$x+1+z=0$
$y+z+1=0$
Substituting for z from the 3rd eq'n into the 2nd,
$1+x+y=0$
$x+1+(-y-1)=0 ; x=y$
Hence $1+2 x=0$, and $\underline{a} \cdot \underline{b}=x=-\frac{1}{2}$

2nd part

[Due to the symmetry between $\underline{a}, \underline{b} \& \underline{c}$, the answer is bound to be that it's an equilateral triangle, but obviously this has to be proved.]
[The official 'Hints \& Sol'ns' just accepts the fact that $\underline{a} \cdot \underline{b}=-\frac{1}{2} \Rightarrow$ the angle between $\underline{a} \& \underline{b}$ is 120°, as $|\underline{a}|=|\underline{b}|=1$, together with a (3d) sketch, invoking symmetry presumably.]

Consider the angle between sides AB and $\mathrm{AC}(\theta$, say $)$.
Then $\overrightarrow{A B} \cdot \overrightarrow{A C}=|\overrightarrow{A B}||\overrightarrow{A C}| \cos \theta$
so that $(\underline{b}-\underline{a}) \cdot(\underline{c}-\underline{a})=|\underline{b}-\underline{a}||\underline{c}-\underline{a}| \cos \theta$
LHS of $(1)=\underline{b} \cdot \underline{c}-\underline{a} \cdot \underline{b}-\underline{a} \cdot \underline{c}+1$
By symmetry, $\underline{b} \cdot \underline{c}=\underline{a} \cdot \underline{c}=\underline{a} \cdot \underline{b}=-\frac{1}{2}$,
so that LHS $=\left(-\frac{1}{2}\right)-\left(-\frac{1}{2}\right)-\left(-\frac{1}{2}\right)+1=\frac{3}{2}$

For the RHS of (1):
$|\underline{b}-\underline{a}|^{2}=(\underline{b}-\underline{a}) \cdot(\underline{b}-\underline{a})=1-2 \underline{a} \cdot \underline{b}+1=2-2\left(-\frac{1}{2}\right)=3$
and by symmetry $|\underline{c}-\underline{a}|^{2}=|\underline{c}-\underline{b}|^{2}=3$ also,
so that all the sides are equal, and the triangle ABC is equilateral
[Also, (1) gives $\frac{3}{2}=\sqrt{3} \cdot \sqrt{3} \cos \theta$, so that $\cos \theta=\frac{1}{2} ; \theta=60^{\circ}$, and hence, by symmetry, all 3 angles are 60°.]

(ii) 1st part

$$
\underline{a}_{1}+\underline{a}_{2}+\underline{a}_{3}+\underline{a}_{4}=\underline{0}
$$

Taking the scalar product of both sides with $\underline{a}_{1}, \underline{a}_{2}, \underline{a}_{3} \& \underline{a}_{4}$, in turn, and writing $\underline{a}_{1} \cdot \underline{a}_{3}=x, \underline{a}_{1} \cdot \underline{a}_{4}=y, \underline{a}_{2} \cdot \underline{a}_{3}=z, \underline{a}_{2} \cdot \underline{a}_{4}=w$:

$$
\begin{align*}
& 1+\underline{a}_{1} \cdot \underline{a}_{2}+x+y=0 \tag{1}\\
& \underline{a}_{1} \cdot \underline{a}_{2}+1+z+w=0 \tag{2}\\
& x+z+1+\underline{a}_{3} \cdot \underline{a}_{4}=0 \tag{3}
\end{align*}
$$

$$
\begin{equation*}
y+w+\underline{a}_{3} \cdot \underline{a}_{4}+1=0 \tag{4}
\end{equation*}
$$

From (1) \& (2), $x+y=z+w$
From (3) \& (4), $x+z=y+w$
Subtracting (6) from (5): $y-z=z-y \Rightarrow 2 y=2 z \Rightarrow y=z$
Then (5) $\Rightarrow x=w$, and (1) - (4) become:
$1+\underline{a}_{1} \cdot \underline{a}_{2}+x+y=0$
$x+y+1+\underline{a}_{3} \cdot \underline{a}_{4}=0$
so that $\underline{a}_{1} \cdot \underline{a}_{2}=\underline{a}_{3} \cdot \underline{a}_{4}$, as required.
(a) [Imagining the quadrilateral as suspended from a point (0) by 4 strings of unit length attached to its corners, a rectangle seems likely. Note that $A_{1} \& A_{2}$ (for example) are specified to be next to each other, so that there isn't symmetry between the 4 points, and a square is therefore not inevitable.]

From the working to the 1 st part of (ii), $x=w$, so that $x=\underline{a}_{1} \cdot \underline{a}_{3}=\underline{a}_{2} \cdot \underline{a}_{4}$, and $y=z$, so that $y=\underline{a}_{1} \cdot \underline{a}_{4}=\underline{a}_{2} \cdot \underline{a}_{3}$

Let $v=\underline{a}_{1} \cdot \underline{a}_{2}=\underline{a}_{3} \cdot \underline{a}_{4}$
Consider the side $A_{1} A_{2}:\left|\overrightarrow{A_{1} A_{2}}\right|^{2}=\overrightarrow{A_{1} A_{2}} \cdot \overrightarrow{A_{1} A_{2}}$
$=\left(\underline{a}_{2}-\underline{a}_{1}\right) \cdot\left(\underline{a}_{2}-\underline{a}_{1}\right)=1-2 \underline{a}_{1} \cdot \underline{a}_{2}+1=2(1-v)$
Similarly, $\left|\overrightarrow{A_{3} A_{4}}\right|^{2}=2\left(1-\underline{a}_{3} \cdot \underline{a}_{4}\right)=2(1-v)$,
so that $A_{1} A_{2}=A_{3} A_{4}$
Also $\left|\overrightarrow{A_{1} A_{4}}\right|^{2}=1-2 \underline{a}_{1} \cdot \underline{a}_{4}+1=2(1-y)$
and $\left|\overrightarrow{A_{2} A_{3}}\right|^{2}=1-2 \underline{a}_{2} \cdot \underline{a}_{3}+1=2(1-y)$,
so that $A_{1} A_{4}=A_{2} A_{3}$
So far, we have established that $A_{1} A_{2} A_{3} A_{4}$ is a parallelogram.
Now consider the diagonals $A_{1} A_{3} \& A_{2} A_{4}$:

$$
\begin{aligned}
& \left|\overrightarrow{A_{1} A_{3}}\right|^{2}=1-2 \underline{a}_{1} \cdot \underline{a}_{3}+1=2(1-x) \\
& \text { and }\left|\overrightarrow{A_{2} A_{4}}\right|^{2}=1-2 \underline{a}_{2} \cdot \underline{a}_{4}+1=2(1-x)
\end{aligned}
$$

so that $A_{1} A_{3}=A_{2} A_{4}$, and hence $A_{1} A_{3} A_{2} A_{4}$ is a rectangle.
[The official mark scheme doesn't offer any explanation as to why the shape should be a rectangle.]
(b) As the tetrahedron is regular,
$A_{1} A_{2}=A_{1} A_{3}=A_{1} A_{4}$,
so that $\left|\overrightarrow{A_{1} A_{2}}\right|^{2}=\left|\overrightarrow{A_{1} A_{3}}\right|^{2}=\left|\overrightarrow{A_{1} A_{4}}\right|^{2}$,
and so $2(1-v)=2(1-x)=2(1-y)$, from the working for (a).
Thus $x=y=v$.
Then, as $1+v+x+y=0$, from (1) in the 1 st part of (ii),
$x=-\frac{1}{3}$, and the sides of the tetrahedron are
$A_{1} A_{2}=\sqrt{2\left(1-\left[-\frac{1}{3}\right]\right)}=\sqrt{\frac{8}{3}}=2 \sqrt{\frac{2}{3}}$

