STEP 2019, P2, Q1 - Solution (3 pages; 10/7/20)

1st part

$f^{\prime}(x)=g(x)+(x-p) g^{\prime}(x)$
$f^{\prime}(a)=g(a)+(a-p) g^{\prime}(a)$
The tangent to the curve $y=f(x)$ at $x=a$ is
$y-f(a)=\left[g(a)+(a-p) g^{\prime}(a)\right](x-a)$
When this tangent passes through $(p, 0)$,
$-f(a)=\left[g(a)+(a-p) g^{\prime}(a)\right](p-a)$
And $f(a)=(a-p) g(a)$,
so that $(1) \Leftrightarrow(p-a) g(a)=\left[g(a)+(a-p) g^{\prime}(a)\right](p-a)$
$\Leftrightarrow 0=(a-p) g^{\prime}(a)$
$\Leftrightarrow g^{\prime}(a)=0$, as $a \neq p$, as required.

(i) 1st part

From the initial result, $g^{\prime}(a)=0$, where
$g(x)=A(x-q)(x-r)$,
so that $g^{\prime}(x)=A(x-r)+A(x-q)$
and $g^{\prime}(a)=0 \Rightarrow a-r+a-q=0($ as $A \neq 0)$;
ie $2 a=q+r$, as required. (1)

2nd part

Writing $f(x)=A(x-p)(x-q)(x-r)$,
the eq' n of the tangent is $y-f(a)=f^{\prime}(a)(x-a)$
and, as the tangent passes through $(p, 0)$,
$-f(a)=f^{\prime}(a)(p-a)$
Also $f(a)=A(a-p)(a-q)(a-r)$,
so that $f^{\prime}(a)=\frac{-A(a-p)(a-q)(a-r)}{p-a}=A(a-q)(a-r)$
Then, from (1), the gradient of the tangent at $x=a$,
$f^{\prime}(a)=A\left(\frac{q+r}{2}-q\right)\left(\frac{q+r}{2}-r\right)=\frac{A}{4}(r-q)(q-r)$
$=-\frac{A}{4}(r-q)^{2}$
(ii) As before, but with r in place of $p, 2 c=p+q$
and $f^{\prime}(c)=-\frac{A}{4}(q-p)^{2}$
So the tangent at $x=c$ is parallel to the tangent at $x=a$ if and
only if $-\frac{A}{4}(q-p)^{2}=-\frac{A}{4}(r-q)^{2} \Leftrightarrow q-p=r-q$
(as $q-p \& r-q$ are both positive)
$\Leftrightarrow 2 q=p+r$

Now, $f(x)=A(x-p)(x-q)(x-r)$
$\Rightarrow f^{\prime}(x)=A(x-q)(x-r)+A(x-p)(x-r)+A(x-p)(x-q)$
so that $f^{\prime}(q)=A(q-p)(q-r)$
and the eq'n of the tangent at $x=q$ is
$y-0=A(q-p)(q-r)(x-q)$
The tangent at $x=q$ meets the curve when
$A(q-p)(q-r)(x-q)=A(x-p)(x-q)(x-r)$
$\Leftrightarrow x=q$ or $(q-p)(q-r)=(x-p)(x-r)$
$\Leftrightarrow x=q$ or $x^{2}-(p+r) x-q^{2}+q(p+r)=0$

When (2) is satisfied, so that $2 q=p+r$,
(3) becomes $x=q$ or $x^{2}-2 q x-q^{2}+2 q^{2}=0$
$\Leftrightarrow x=q$ or $(x-q)^{2}=0$
ie the tangent at $x=q$ only meets the curve at $x=q$, and so does not meet the curve again.

Conversely, if the tangent at $x=q$ does not meet the curve again, the only roots of (3) will be $x=q$
(3) $\Rightarrow x=\frac{p+r \pm \sqrt{(p+r)^{2}-4\left[-q^{2}+q(p+r)\right]}}{2}$

Hence $(p+r)^{2}-4\left[-q^{2}+q(p+r)\right]=0$ and $q=\frac{p+r}{2}$
If $q=\frac{p+r}{2}$, the LHS of the 1 st equation is $4 q^{2}+4 q^{2}-4 q(2 q)=0$
So, if the tangent at $x=q$ does not meet the curve again, (2) is satisfied, and the tangent at $x=c$ is parallel to the tangent at $x=a$

Thus, the tangent at $x=c$ is parallel to the tangent at $x=a$ if and only if the tangent at $x=q$ does not meet the curve again, as required.

