STEP 2019, P2, Q11 - Solution (5 pages;7/7/20)
(i) 1st part

When $n_{3}=9$, possibilities are:
2, 8
3, $8 ; 3,7$
4, 8; 4,7; 4, 6
5, 8; 5, 7; 5, 6
6, 8; 6, 7
7, 8
ie number of ways is 12
When $n_{3}=10$, possibilities are:
2, 9
3, 9 ; 3, 8
4,$9 ; 4,8 ; 4,7$
5,$9 ; 5,8 ; 5,7 ; 5,6$
6,$9 ; 6,8 ; 6,7$
7,9;7,8
8, 9
ie number of ways is 16
2nd part
For $n_{3}=7$, we have:
2, 6
3, 6; 3, 5

4, 6; 4, 5
5, 6
So, for $n_{3}=2 n+1$, the numbers of ways are:
1

2
...
$n-1$
$n-1$
...
2

1
giving $2(1+2+\cdots+[n-1])=(n-1) n$

3rd part

For $n_{3}=2 n$, the numbers of ways are:
$1+2+\cdots+(n-2)+(n-1)+(n-2)+\cdots+2+1$
$=2(1+2+\cdots+[n-2])+(n-1)$
$=(n-2)(n-1)+(n-1)=(n-1)(n-1)=(n-1)^{2}$
(ii) When $N=2 n+1$, Prob. that triangle can be formed
$=\frac{\text { number of ways in which a triangle can be formed }}{\text { number of ways in which the rods can be selected }}$
$=\frac{(n-1) n}{\binom{2 n}{2}}=\frac{(n-1) n}{\left(\frac{2 n(2 n-1)}{2}\right)}=\frac{n-1}{2 n-1}$, as required.

When $N=2 n$, Prob. $=\frac{(n-1)^{2}}{\binom{2 n-1}{2}}=\frac{(n-1)^{2}}{\left(\frac{(2 n-1)(2 n-2)}{2}\right)}=\frac{n-1}{2 n-1}$ also.
(iii) Prob. that triangle can be formed
$=\sum_{r=4}^{2 M+1}\{\operatorname{Prob}($ longest rod is of length r)
$\times \operatorname{Prob}($ triangle can be formed|longest rod is of length r) \}

Prob(longest rod is of length r)
$=\frac{n o . \text { of } \text { ways in } \text { which longest rod is of length } r}{\text { no. of ways in which } 3 \text { rods can be selected }}=\frac{\binom{r-1}{2}}{\binom{2 M+1}{3}}$
$=\frac{\left(\frac{(r-1)(r-2)}{2!}\right)}{\left(\frac{2 M+1)(2 M)(2 M-1)}{3!}\right)}=\frac{3(r-1)(r-2)}{2 M(2 M+1)(2 M-1)}$
and Prob(triangle can be formed|longest rod is of length r)
$=\frac{n-1}{2 n-1}$ when $r=2 n+1$, and $\frac{n-1}{2 n-1}$ when $r=2 n$

So Prob. that triangle can be formed
$=\sum_{n=2}^{M} \frac{3(2 n-1)(2 n-2)}{2 M(2 M+1)(2 M-1)} \cdot \frac{n-1}{2 n-1}$
$+\sum_{n=2}^{M} \frac{3(2 n)(2 n-1)}{2 M(2 M+1)(2 M-1)} \cdot \frac{n-1}{2 n-1}$
$=\frac{3}{M(2 M+1)(2 M-1)} \sum_{n=2}^{M}\left\{(n-1)^{2}+n(n-1)\right\}$
$=\frac{3}{M(2 M+1)(2 M-1)} \sum_{n=1}^{M}(n-1)(2 n-1)$
Now $(n-1)(2 n-1)=2 n^{2}-3 n+1$
and $\sum_{n=1}^{M}\left\{2 n^{2}-3 n+1\right\}$

$$
\begin{aligned}
& =\frac{2}{6} M(M+1)(2 M+1)-\frac{3}{2} M(M+1)+M \\
& =\frac{M}{6}\left\{4 M^{2}+6 M+2-9 M-9+6\right\} \\
& =\frac{M}{6}\left\{4 M^{2}-3 M-1\right\} \\
& =\frac{M(4 M+1)(M-1)}{6}
\end{aligned}
$$

Then Prob. that triangle can be formed
$=\frac{3}{M(2 M+1)(2 M-1)} \cdot \frac{M(4 M+1)(M-1)}{6}$
$=\frac{(4 M+1)(M-1)}{2(2 M+1)(2 M-1)}$, as required .

Alternative method

Prob. that triangle can be formed
$=\frac{\text { no. of ways in which a triangle can be formed }}{\text { no. of ways in which } 3 \text { rods can be selected }}$

From (i), no. of ways in which a triangle can be formed $=\sum_{k=4}^{2 M+1}$ (no. of ways in which a triangle can be formed from the integers $1,2, \ldots k$)
$=\sum_{r=2}^{M}(r-1)^{2}+\sum_{r=2}^{M}(r-1) r$
(for $k=2 r \& k=2 r+1$, respectively)
$=\sum_{r=2}^{M}(r-1)(2 r-1)$
$=\sum_{r=1}^{M}(r-1)(2 r-1)$
$=\frac{M(4 M+1)(M-1)}{6}$, as above

Hence Prob. that triangle can be formed
$=\frac{\left(\frac{M(4 M+1)(M-1)}{6}\right)}{\binom{2 M+1}{3}}$
$=\frac{\left(\frac{M(4 M+1)(M-1)}{6}\right)}{\left(\frac{(2 M+1)(2 M)(2 M-1)}{3!}\right)}$
$=\frac{(4 M+1)(M-1)}{2(2 M+1)(2 M-1)}$

