STEP 2019, P1, Q4 - Solution (3 pages; 12/2/21)
(i) $\sqrt{3+2 \sqrt{2}}=m+n \sqrt{2}$
$\Rightarrow 3+2 \sqrt{2}=m^{2}+2 n^{2}+2 m n \sqrt{2}$
As we are only being asked to find a pair of integers that work, we can see that $m=n=1$ is a solution.
[Algebraically:
Beware of spurious sol'ns, arising from $-\sqrt{3+2 \sqrt{2}}=m+n \sqrt{2}$.
We require $m n=1$,
and $3=m^{2}+2 n^{2}=\frac{1}{n^{2}}+2 n^{2}$
Let $N=n^{2}$, so that $2 N^{2}-3 N+1=0$,
and $(2 N-1)(N-1)=0$,
so that $N=1$ (in order for $n= \pm 1$; ie an integer)
If $n=1$, then $m=1$, and $m+n \sqrt{2}>0$, and therefore this isn't the spurious sol'n from $-\sqrt{3+2 \sqrt{2}}=m+n \sqrt{2}$]
(ii) $1^{\text {st }}$ Part
[Note that it isn't sufficient to expand the given form, and observe that the coefficient of x^{3} is zero, as this is proving that $B \Rightarrow A$, rather than $A \Rightarrow B$.]

If $f(x)=0$ has roots $\alpha, \beta, \gamma, \delta$,
then $f(x)=(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)$
$=\left(x^{2}-(\alpha+\beta) x+\alpha \beta\right)^{2}\left(x^{2}-(\gamma+\delta) x+\gamma \delta\right)^{2}$
Also, as the coefficient of x^{3} in $f(x)$ is zero, $\alpha+\beta+\gamma+\delta=0$, so that if $-(\alpha+\beta)=s$, then $-(\gamma+\delta)=-s$

So, with $p=\alpha \beta$ and $q=\gamma \delta, f(x)$ can be written in the required form.

2nd Part

Expanding the given form for $f(x)$ gives
$x^{4}+x^{3}(-s+s)+x^{2}\left(q-s^{2}+p\right)+x(s q-p s)+p q$, and $f(x)$ can therefore be written in the given form if the following equations can be solved:
$q-s^{2}+p=-10$
$s(q-p)=12(2)$
$p q=-2$

3rd Part

Then $s^{2}\left(s^{2}-10\right)^{2}+8 s^{2}-144$
$=\frac{144}{(q-p)^{2}}(q+p)^{2}+\frac{8(144)}{(q-p)^{2}}-144$, from (1) \& (2)
$=\frac{144}{(q-p)^{2}}\left\{(q+p)^{2}+8-(q-p)^{2}\right\}$
$=\frac{144}{(q-p)^{2}}\{8+4 q p\}=0$, from (3)

$4^{\text {th }}$ Part

Writing $x=s^{2}, s^{2}\left(s^{2}-10\right)^{2}+8 s^{2}-144=0$
$\Rightarrow g(x)=x(x-10)^{2}+8 x-144=0$
Now $g(2)=2(64)+16-144=0$,
so that $g(x)=x^{3}-20 x^{2}+108 x-144$
$=(x-2)\left(x^{2}-18 x+72\right)$
$=(x-2)(x-6)(x-12)$,
so that the 3 possible values of s^{2} are $2,6 \& 12$

$5^{\text {th }}$ Part

With $s^{2}=2$, eq'ns (1) \& (3) become:
$q+p=-8\left(1^{\prime}\right)$ and $p q=-2$ (3)
so that $-\frac{2}{p}+p+8=0$
$\Rightarrow p^{2}+8 p-2=0$
$\Rightarrow p=\frac{-8 \pm \sqrt{64+8}}{2}=-4 \pm 3 \sqrt{2}$
Thus, $s=\sqrt{2}, p=-4-3 \sqrt{2}, q=-4+3 \sqrt{2}$ are possible values, as then eq'n (2): $s(q-p)=12$ is satisfied.

So $f(x)=\left(x^{2}+\sqrt{2} x-4-3 \sqrt{2}\right)\left(x^{2}-\sqrt{2} x-4+3 \sqrt{2}\right)$
$\Rightarrow x=\frac{-\sqrt{2} \pm \sqrt{2+16+12 \sqrt{2}}}{2}$ or $\frac{\sqrt{2} \pm \sqrt{2+16-12 \sqrt{2}}}{2}$
ie $\frac{-\sqrt{2} \pm \sqrt{6} \sqrt{3+2 \sqrt{2}}}{2}$ or $\frac{\sqrt{2} \pm \sqrt{6} \sqrt{3-2 \sqrt{2}}}{2}$
From (i), $\sqrt{3+2 \sqrt{2}}=1+\sqrt{2}$
Similarly, for $\sqrt{3-2 \sqrt{2}}=m+n \sqrt{2}$,
$3-2 \sqrt{2}=m^{2}+2 n^{2}+2 m n \sqrt{2}$
We require $m n=-1$,
and $3=m^{2}+2 n^{2}=\frac{1}{n^{2}}+2 n^{2}$ (as before)
and $\sqrt{3-2 \sqrt{2}}=-1+\sqrt{2}$ works
Then, from $\left({ }^{*}\right), x=\frac{-\sqrt{2} \pm \sqrt{6}(1+\sqrt{2})}{2}$ or $\frac{\sqrt{2} \pm \sqrt{6}(-1+\sqrt{2})}{2}$
ie $\frac{-\sqrt{2}+\sqrt{6}+2 \sqrt{3}}{2}, \frac{-\sqrt{2}-\sqrt{6}-2 \sqrt{3}}{2}, \frac{\sqrt{2}-\sqrt{6}+2 \sqrt{3}}{2}$ or $\frac{\sqrt{2}+\sqrt{6}-2 \sqrt{3}}{2}$

