STEP 2019, P1, Q11 - Solution (2 pages; 3/7/2020)
(i) 1st part

Prob (they make a decision on the nth round)
$=(p q+q p)^{n-1}(p p+q q)=\left(q^{2}+p^{2}\right)(2 q p)^{n-1}$, as required.

2nd part

Prob (they make a decision on or before the $n t h$ round)
$=\sum_{r=1}^{n}\left(q^{2}+p^{2}\right)(2 q p)^{r-1}=\left(q^{2}+p^{2}\right) \frac{1-(2 q p)^{n}}{1-2 q p}$
And $(p+q)^{2}=1^{2}$, so that $q^{2}+p^{2}=(p+q)^{2}-2 p q=1-2 p q$,
so that $(1)=1-(2 q p)^{n}$
Result to prove: $q p \leq \frac{1}{4}$
Proof: $q p \leq \frac{1}{4} \Leftrightarrow 4 p(1-p) \leq 1$
$\Leftrightarrow 4 p^{2}-4 p+1 \geq 0$
As LHS $=4\left(p-\frac{1}{2}\right)^{2}$, the result is proved.
Hence $1-(2 q p)^{n} \geq 1-\left(\frac{1}{2}\right)^{n}=1-\frac{1}{2^{n}}$, as required.
(ii) Prob (they make a decision on the 1 st round) $=p^{3}+q^{3}$

Prob (they make a decision on the $2 n d$ round)
$=3 \operatorname{Prob}(H H T$ on 1 st round) $\operatorname{Prob}(\mathrm{HH}$ on 2 nd round)
$+3 \operatorname{Prob}(T T H$ on 1st round) $\operatorname{Prob}(T T$ on 2 nd round)
(The multiple of 3 covers the additional possibilities of HTH or THH on the 1 st round, etc.)
$=3 p^{2} q \cdot p^{2}+3 q^{2} p \cdot q^{2}$

So Prob (they make a decision on or before the 2 nd round)
$=p^{3}+q^{3}+3 p^{2} q \cdot p^{2}+3 q^{2} p \cdot q^{2}$
$=(p+q)^{3}-3 p^{2} q-3 p q^{2}+3 p^{4} q+3 q^{4} p$
$=1-3 p q\left(p+q-p^{3}-q^{3}\right)$
[to show that the Prob. has a lower bound, we may be able to use the result that $p q \leq \frac{1}{4}$]
$=1-3 p q\left(1-p^{3}-q^{3}\right)$
The critical point will be where $1-3\left(\frac{1}{4}\right)\left(1-p^{3}-q^{3}\right)=\frac{7}{16}$;
ie $\frac{9}{16}=\frac{3}{4}\left(1-p^{3}-q^{3}\right)$;
$9=12\left(1-p^{3}-q^{3}\right) ;$
$12\left(p^{3}+q^{3}\right)=3 ;$
$p^{3}+q^{3}=\frac{1}{4}$
Then, for (2) to be at least $\frac{7}{16}$, we want to show that $p^{3}+q^{3} \geq \frac{1}{4}$
$\Leftrightarrow(p+q)^{3}-3 p^{2} q-3 p q^{2} \geq \frac{1}{4}$
$\Leftrightarrow 1-3 p q(p+q) \geq \frac{1}{4}$
$\Leftrightarrow \frac{3}{4} \geq 3 p q$
$\Leftrightarrow p q \leq \frac{1}{4}$, and this result was established in (i).
Thus we have proved that Prob (they make a decision on or before the $2 n d$ round) is at least $\frac{7}{16}$.

