STEP 2019, P1, Q10 - Solution (2 pages; 6/7/20)
(i) 1st part
[The Cartesian eq'n can be quoted (according to the Examiner's Report), but is derived here.]
$x=u \sin \alpha . t, y=u \cos \alpha \cdot t-\frac{1}{2} g t^{2}$
Eliminating $t, y=u \cos \alpha\left(\frac{x}{u \sin \alpha}\right)-\frac{1}{2} g\left(\frac{x}{u \sin \alpha}\right)^{2}$
Then, as the particle passes through the point (h tan β, h),
$h=u \cos \alpha\left(\frac{h \tan \beta}{u \sin \alpha}\right)-\frac{1}{2} g\left(\frac{h \tan \beta}{u \sin \alpha}\right)^{2}$
$\Rightarrow 1-\tan \beta c=-\frac{g h t a n^{2} \beta \operatorname{cosec}^{2} \alpha}{2 u^{2}}$
$=-\frac{\tan ^{2} \beta\left(c^{2}+1\right)}{k}$
$\Rightarrow k \cot ^{2} \beta-k \cot \beta . c=-\left(c^{2}+1\right)$
$\Rightarrow c^{2}+1+k \cot ^{2} \beta-k \cot \beta . c=0$
or $c^{2}-c k \cot \beta+1+k \cot ^{2} \beta=0$, as required.
(a) 1st part

The sum of the roots of the quadratic in c is $-(-k \cot \beta)$,
so that $\cot \alpha_{1}+\cot \alpha_{2}=k \cot \beta$, as required. (1)

2nd part

The product of the roots of the quadratic in c is $1+k \cot ^{2} \beta$,
so that $\cot \alpha_{1} \cdot \cot \alpha_{2}=1+k \cot ^{2} \beta$
and $\cot \alpha_{1} \cdot \cot \alpha_{2}-1=k \cot ^{2} \beta$
Then (2) $\div(1) \Rightarrow \cot \beta=\frac{\cot \alpha_{1} \cdot \cot \alpha_{2}-1}{\cot \alpha_{1}+\cot \alpha_{2}}$
$\Rightarrow \tan \beta=\frac{\cot \alpha_{1}+\cot \alpha_{2}}{\cot \alpha_{1} \cdot \cot \alpha_{2}-1}$
$=\frac{\tan \alpha_{2}+\tan \alpha_{1}}{1-\tan \alpha_{2} \tan \alpha_{1}}=\tan \left(\alpha_{1}+\alpha_{2}\right)$
$\Rightarrow \beta=\alpha_{1}+\alpha_{2}+180 n$ (for some integer n)
As $\alpha_{1} \& \alpha_{2}$ are positive, and $0<\beta<90, n=0$;
ie $\beta=\alpha_{1}+\alpha_{2}$, as required.
(b) [An inequality in conjunction with a quadratic eq'n suggests the use of the discriminant.]

As there are 2 distinct roots of the quadratic,
$(-k \cot \beta)^{2}-4\left(1+k \cot ^{2} \beta\right)>0$
$\Rightarrow \cot ^{2} \beta\left(k^{2}-4 k\right)>4$
$\Rightarrow k^{2}-4 k>4 \tan ^{2} \beta$
$\Rightarrow(k-2)^{2}-4>4\left(\sec ^{2} \beta-1\right)$
$\Rightarrow(k-2)^{2}>4 \sec ^{2} \beta$
$\Rightarrow k-2>2 \sec \beta$, provided $k-2>0$
ie result to prove: $\frac{2 u^{2}}{g h}-2>0$, or $u^{2}>g h$
From " $v^{2}=u^{2}+2 a s$ ", if H is the maximum height reached, then
$0=(u \cos \alpha)^{2}-2 g H$, so that $u^{2}=\frac{2 g H}{\cos ^{2} \alpha}>\frac{g h}{1}$, as required (as
$\alpha>0$, so that $\cos \alpha<1$)
Thus, from (3), $k>2(1+\sec \beta$), as required.
(ii) From (4), $u^{2}=2 g H \sec ^{2} \alpha$,
so that $k=\frac{2 u^{2}}{g h}=\frac{4 H \sec ^{2} \alpha}{h} \geq 4 \sec ^{2} \alpha$ (as $H \geq h$), as required.

