STEP 2018, P3, Q11 - Solution (5 pages; 17/2/21)

1st part

Given that the particle is performing circular motion up to the point when the string is slack, resolving the forces on the particle along the string gives
$T^{\prime}+m g \cos \alpha=m \frac{V^{2}}{b}$, where m is the mass of the particle
The string becomes slack when the tension, T^{\prime} in the string becomes zero,
so that $g \cos \alpha=\frac{V^{2}}{b}$, and $V=\sqrt{b g \cos \alpha}($ as $V>0)$
$2{ }^{\text {nd }}$ part

After the string becomes slack, the particle will follow the path of a projectile until it reaches point Q in the diagram. Its initial speed
is V, perpendicular to the string, and therefore at an angle α to the horizontal (see the diagram above). Let its speed at Q be W , with its trajectory making an angle β with the horizontal (see the diagram below).

As the horizontal component of the velocity of the particle remains unchanged,
$V \cos \alpha=W \cos \beta$
Considering the vertical component:
$V \sin \alpha-g T=-W \sin \beta$
Consider the coordinates of $\mathrm{Q},(x, y)$ relative to 0 .
The string becomes taut again when $x^{2}+y^{2}=b^{2}$
The coordinates of P (where the string becomes slack) relative to 0 are $(-b \sin \alpha, b \cos \alpha)$

And so $b \sin \alpha+x=V \cos \alpha$. T
Also, the (upwards) displacement of the particle in its motion from P to Q (which will be negative) is
$\left(\right.$ from ' $\left.^{\prime} s=\frac{1}{2}(u+v) t^{\prime}\right) \frac{1}{2}(V \sin \alpha-W \sin \beta) T$,
and so $y=b \cos \alpha+\frac{1}{2}(V \sin \alpha-W \sin \beta) T$,
which from (2) becomes
$y=b \cos \alpha+\frac{1}{2}(2 V \sin \alpha-g T) T$
Substituting for $x \& y$ from (4) \& (5) into (3) gives
$(V \cos \alpha . T-b \sin \alpha)^{2}+\left(b \cos \alpha+V T \sin \alpha-\frac{1}{2} g T^{2}\right)^{2}=b^{2}$
[This doesn't look very promising, although we can see that
$b^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha=b^{2}$, and $V^{2}=b g \cos \alpha$ may help.]
$\Rightarrow V^{2} \cos ^{2} \alpha . T^{2}+b^{2} \sin ^{2} \alpha-2 V T b \cos \alpha \sin \alpha+b^{2} \cos ^{2} \alpha$
$+V^{2} T^{2} \sin ^{2} \alpha+\frac{1}{4} g^{2} T^{4}+2 b V T \cos \alpha \sin \alpha-b g T^{2} \cos \alpha$
$-V g T^{3} \sin \alpha=b^{2}$
$\Rightarrow V^{2} \cos ^{2} \alpha . T^{2}+V^{2} T^{2} \sin ^{2} \alpha+\frac{1}{4} g^{2} T^{4}-b g T^{2} \cos \alpha-$
$V g T^{3} \sin \alpha=0$
$\Rightarrow V^{2} T^{2}+\frac{1}{4} g^{2} T^{4}-b g T^{2} \cos \alpha-V g T^{3} \sin \alpha=0$
$\Rightarrow V^{2}+\frac{1}{4} g^{2} T^{2}-b g \cos \alpha-V g T \sin \alpha=0($ as $T \neq 0)$
$\Rightarrow \frac{1}{4} g^{2} T^{2}-V g T \sin \alpha=0$
$\Rightarrow g T=4 V \sin \alpha$, as required

3rd part

Dividing (2) by (1) gives
$\frac{V \sin \alpha-4 V \sin \alpha}{V \cos \alpha}=-\tan \beta$,
so that $\tan \beta=3 \tan \alpha$, as required

4th part

[Obviously calculators can't be used in the STEP exam, but the necessary α and β implied by $\sin ^{2} \alpha=\frac{1+\sqrt{3}}{4}$ and $\tan \beta=3 \tan \alpha$ are $\alpha=56^{\circ}$ and $\beta=77^{\circ}$ (to the nearest degree).]

The particle will come to rest if it is travelling in the direction of the string (away from 0) just before the string becomes taut again. Referring to the diagram, this will occur if
$\frac{-y}{x}=\tan \beta=3 \tan \alpha$
From (4) \& (5), this means that $\frac{-\left\{b \cos \alpha+\frac{1}{2}(2 V \sin \alpha-g T) T\right\}}{V \cos \alpha \cdot T-b \sin \alpha}=3 \tan \alpha$,
when $g T=4 V \sin \alpha\left(\right.$ and $\left.V^{2}=b g \cos \alpha\right)$
$\Rightarrow \frac{b \cos \alpha-V \sin \alpha . T}{b \sin \alpha-V \cos \alpha . T}=3 \tan \alpha$
$\Rightarrow \frac{b g \cos \alpha-V \sin \alpha . g T}{b \sin \alpha-V \cos \alpha . T}=3 \mathrm{gtan} \alpha$
$\Rightarrow \frac{V^{2}-V \sin \alpha .4 V \sin \alpha}{b \sin \alpha-V \cos \alpha \cdot T}=3 \operatorname{gtan} \alpha$
$\Rightarrow V^{2}\left(1-4 \sin ^{2} \alpha\right)=\frac{3 g b \sin ^{2} \alpha}{\cos \alpha}-3 g T V \sin \alpha$
$=\frac{3 b g \cos \alpha \sin ^{2} \alpha}{\cos ^{2} \alpha}-3 V \sin \alpha(4 V \sin \alpha)$

Then, writing $A=\sin ^{2} \alpha$,
$V^{2}(1-4 A)=\frac{3 V^{2} A}{1-A}-12 V^{2} A$,
so that (assuming $V \neq 0$) $1-4 A=\frac{3 A}{1-A}-12 A$
$\Rightarrow(1+8 A)(1-A)=3 A$
$\Rightarrow 1-8 A^{2}+7 A=3 A$
$\Rightarrow 8 A^{2}-4 A-1=0$
$\Rightarrow \sin ^{2} \alpha=\frac{4 \pm \sqrt{16+32}}{16}$
$=\frac{1+\sqrt{3}}{4}$ (rejecting the negative root), as required

