STEP 2018, Paper 1, Q9 - Solution (2 pages; 29/1/21)
(i) 1st part

If the go-kart reaches the house, its final potential energy will be no greater than its initial potential energy. Hence, referring to the diagram,
$m g d \sin \beta \leq m g x \sin \alpha$, where m is the mass of the go-kart;
so that $x \sin \alpha \geq d \sin \beta$, as required

$2^{\text {nd }}$ part

Let $T_{1} \& T_{2}$ be the times taken for the 2 parts of the journey, and let v be the speed at the traffic lights.

Then, applying suvat eq'ns:
$x=\frac{1}{2}(g \sin \alpha) T_{1}{ }^{2}$
$d=v T_{2}-\frac{1}{2}(g \sin \beta) T_{2}{ }^{2}$
$v=g \sin \alpha T_{1}$
Then (2) \& (3) $\Rightarrow \frac{1}{2}(g \sin \beta) T_{2}{ }^{2}-g \sin \alpha T_{1} T_{2}+d=0$
And (1) \& (4) $\Rightarrow \frac{1}{2}(g \sin \beta) T_{2}{ }^{2}-g \sin \alpha \sqrt{\frac{2 x}{g \sin \alpha}} T_{2}+d=0$
$\Rightarrow T_{2}=\frac{\sqrt{2 x g \sin \alpha} \pm \sqrt{2 x g \sin \alpha-2 g \sin \beta d}}{g \sin \beta}$
However, the larger value can be excluded, as it relates to when the go-kart has continued beyond the house and then returned back to it (having come to a halt on the slope).

Also, from (1), $T_{1}=\sqrt{\frac{2 x}{g \sin \alpha}}$
The total time $T=T_{1}+T_{2}$

$$
\begin{aligned}
& =\sqrt{\frac{2 x}{g \sin \alpha}}+\frac{\sqrt{2 x g \sin \alpha}-\sqrt{2 x g \sin \alpha-2 g \sin \beta d}}{g \sin \beta} \\
& \Rightarrow\left(\frac{g \sin \alpha}{2}\right)^{\frac{1}{2}} T=\sqrt{x}+\sqrt{\frac{g \sin \alpha}{2} \cdot \frac{2 x g \sin \alpha}{g^{2} \sin ^{2} \beta}} \\
& -\sqrt{\frac{g \sin \alpha}{2} \cdot \frac{(2 x g \sin \alpha-2 g \sin \beta d)}{g^{2} \sin ^{2} \beta}} \\
& =\sqrt{x}+k \sqrt{x}-\sqrt{k^{2} x-k d}, \text { where } k=\frac{\sin \alpha}{\sin \beta} \\
& =(1+k) \sqrt{x}-\sqrt{k^{2} x-k d}, \text { as required. }
\end{aligned}
$$

3rd part

$\frac{d T}{d x}=0 \Rightarrow \frac{1}{2}(1+k) x^{-\frac{1}{2}}-\frac{1}{2}\left(k^{2} x-k d\right)^{-\frac{1}{2}} k^{2}=0$
$\Rightarrow(1+k)^{2} x^{-1}=\left(k^{2} x-k d\right)^{-1} k^{4}$
$\Rightarrow k^{4} x=(1+k)^{2}\left(k^{2} x-k d\right)$
$\Rightarrow k^{3} x=(1+k)^{2}(k x-d)$
$\Rightarrow x\left(k^{3}-\left(k+2 k^{2}+k^{3}\right)\right)=-(1+k)^{2} d$
$\Rightarrow x=\frac{(1+k)^{2} d}{k+2 k^{2}}$ or $\frac{(1+k)^{2} d}{k(1+2 k)}$

