STEP 2018, P1, Q7 - Solution (3 pages; 9/5/20)

(i) With
$$x = \frac{pz+q}{z+1}$$
, $x^3 - 3pqx + pq(p+q) = 0$ becomes
 $(\frac{pz+q}{z+1})^3 - 3pq(\frac{pz+q}{z+1}) + pq(p+q) = 0$
 $\Rightarrow (pz+q)^3 - 3pq(pz+q)(z+1)^2 + pq(p+q)(z+1)^3 = 0$ (A)
Coeff. of z^3 on LHS of (A) is
 $p^3 - 3pq.p + pq(p+q) = p(p^2 - 3pq + pq + q^2)$
 $= p(p-q)^2$
Coeff. of z^2 on LHS of (A) is
 $3p^2q - 3pq(2p+q) + pq(p+q)(3)$
 $= pq(3p-6p-3q+3p+3q) = 0$
Coeff. of z on LHS of (A) is $3pq^2 - 3pq(p+2q) + pq(p+q)(3)$
 $= pq(3q-3p-6q+3p+3q) = 0$
Constant term on LHS of (A) is $q^3 - 3pq.q + pq(p+q)$
 $= q(q^2 - 2pq + p^2) = q(q-p)^2$
Thus the equation (A) reduces to $p(p-q)^2z^3 + q(p-q)^2 = 0$
and, as $p \neq q$, $pz^3 + q = 0$

(ii) Suppose that
$$c = pq$$
 and $d = pq(p + q)$ where $p \neq q$
Then $d = c(p + q)$ and so $d = c(p + \frac{c}{p})$
and $dp = cp^2 + c^2$, so that $cp^2 - dp + c^2 = 0$ (B)
This has distinct real sol'ns when $d^2 - 4c^3 > 0$
and, by symmetry, the sol'ns of (B) will be $p \& q$.

Thus, provided that $d^2 > 4c^3$, there will be distinct solutions p & q of $cx^2 - dx + c^2 = 0$, with $pq = \frac{c^2}{c} = c$

and $p + q = \frac{-(-d)}{c}$, so that d = pq(p + q);

ie *c* & *d* can be expressed in terms of *p* & *q*, as required.

[The Examiner's Report indicates that candidates need to be careful to show that c = pq and d = pq(p + q) is possible, provided that $d^2 > 4c^3$; rather than showing that $d^2 > 4c^3$ when c = pq and d = pq(p + q).]

(iii)
$$x^3 + 6x - 2 = 0$$
 can be written in the form
 $x^3 - 3pqx + pq(p + q) = 0$,
where $p \& q$ are the roots of $cx^2 - dx + c^2 = 0$, from (B) in (ii),
where $c = -2 \& d = -2$
So $-2x^2 + 2x + 4 = 0$, or $x^2 - x - 2 = 0$,
so that $(x - 2)(x + 1) = 0$ and hence $p = 2, q = -1$ (say).
Thus, from (i), if $x = \frac{pz+q}{z+1} = \frac{2z-1}{z+1}$,
then , $pz^3 + q = 0$; ie $2z^3 - 1 = 0$,
with real root $z = 2^{-\frac{1}{3}}$,
giving $x = \frac{2z-1}{z+1} = \frac{2(2^{-\frac{1}{3}})-1}{(2^{-\frac{1}{3}})+1} = \frac{2-2^{\frac{1}{3}}}{1+2^{\frac{1}{3}}}$

(iv)
$$x^3 - 3p^2x + 2p^3 = 0$$

 $\Rightarrow (x - p)(x^2 + px - 2p^2) = 0$
 $\Rightarrow (x - p)(x - p)(x + 2p) = 0$
So roots are $p, p \& - 2p$. (C)

Consider $x^3 - 3cx + d = 0$, where $d^2 = 4c^3$ From the working to (ii), we can write $c = p^2 \& d = 2p^3$, to give $x^3 - 3p^2x + 2p^3 = 0$ with roots p, p & -2p, from (C). Thus the roots of $x^3 - 3cx + d = 0$ (with $d^2 = 4c^3$) are: $\sqrt{c}, \sqrt{c} \& -2\sqrt{c}$ or $-\sqrt{c}, -\sqrt{c} \& 2\sqrt{c}$

If \sqrt{c} is a root, then $c\sqrt{c} - 3c(\sqrt{c}) + d = 0$, so that $d = 2c\sqrt{c}$, whilst if $-\sqrt{c}$ is a root, then $-c\sqrt{c} - 3c(-\sqrt{c}) + d = 0$, so that $d = -2c\sqrt{c}$