STEP 2018, P1, Q7-Solution (3 pages; 9/5/20)
(i) With $x=\frac{p z+q}{z+1}, x^{3}-3 p q x+p q(p+q)=0$ becomes
$\left(\frac{p z+q}{z+1}\right)^{3}-3 p q\left(\frac{p z+q}{z+1}\right)+p q(p+q)=0$
$\Rightarrow(p z+q)^{3}-3 p q(p z+q)(z+1)^{2}+p q(p+q)(z+1)^{3}=0$
Coeff. of z^{3} on LHS of (A) is
$p^{3}-3 p q . p+p q(p+q)=p\left(p^{2}-3 p q+p q+q^{2}\right)$
$=p(p-q)^{2}$
Coeff. of z^{2} on LHS of (A) is
$3 p^{2} q-3 p q(2 p+q)+p q(p+q)(3)$
$=p q(3 p-6 p-3 q+3 p+3 q)=0$
Coeff. of z on LHS of (A) is $3 p q^{2}-3 p q(p+2 q)+p q(p+q)(3)$
$=p q(3 q-3 p-6 q+3 p+3 q)=0$
Constant term on LHS of (A) is $q^{3}-3 p q \cdot q+p q(p+q)$
$=q\left(q^{2}-2 p q+p^{2}\right)=q(q-p)^{2}$
Thus the equation (A) reduces to $p(p-q)^{2} z^{3}+q(p-q)^{2}=0$ and, as $p \neq q, p z^{3}+q=0$
(ii) Suppose that $c=p q$ and $d=p q(p+q)$ where $p \neq q$

Then $d=c(p+q)$ and so $d=c\left(p+\frac{c}{p}\right)$
and $d p=c p^{2}+c^{2}$, so that $c p^{2}-d p+c^{2}=0$ (B)
This has distinct real sol'ns when $d^{2}-4 c^{3}>0$
and, by symmetry, the sol'ns of (B) will be p \& q.

Thus, provided that $d^{2}>4 c^{3}$, there will be distinct solutions $p \& q$ of $c x^{2}-d x+c^{2}=0$, with $p q=\frac{c^{2}}{c}=c$ and $p+q=\frac{-(-d)}{c}$, so that $d=p q(p+q)$; ie $c \& d$ can be expressed in terms of $p \& q$, as required.
[The Examiner's Report indicates that candidates need to be careful to show that $c=p q$ and $d=p q(p+q)$ is possible, provided that $d^{2}>4 c^{3}$; rather than showing that $d^{2}>4 c^{3}$ when $c=p q$ and $d=p q(p+q)$.]
(iii) $x^{3}+6 x-2=0$ can be written in the form
$x^{3}-3 p q x+p q(p+q)=0$,
where $p \& q$ are the roots of $c x^{2}-d x+c^{2}=0$, from (B) in (ii), where $c=-2 \& d=-2$

So $-2 x^{2}+2 x+4=0$, or $x^{2}-x-2=0$,
so that $(x-2)(x+1)=0$ and hence $p=2, q=-1$ (say).
Thus, from (i), if $x=\frac{p z+q}{z+1}=\frac{2 z-1}{z+1}$,
then,$p z^{3}+q=0$; ie $2 z^{3}-1=0$,
with real root $z=2^{-\frac{1}{3}}$,
giving $x=\frac{2 z-1}{z+1}=\frac{2\left(2^{-\frac{1}{3}}\right)-1}{\left(2^{-\frac{1}{3}}\right)+1}=\frac{2-2^{\frac{1}{3}}}{1+2^{\frac{1}{3}}}$
(iv) $x^{3}-3 p^{2} x+2 p^{3}=0$
$\Rightarrow(x-p)\left(x^{2}+p x-2 p^{2}\right)=0$
$\Rightarrow(x-p)(x-p)(x+2 p)=0$
So roots are $p, p \&-2 p$. (C)

Consider $x^{3}-3 c x+d=0$, where $d^{2}=4 c^{3}$
From the working to (ii), we can write $c=p^{2} \& d=2 p^{3}$, to give $x^{3}-3 p^{2} x+2 p^{3}=0$
with roots $p, p \&-2 p$, from (C).
Thus the roots of $x^{3}-3 c x+d=0$ (with $d^{2}=4 c^{3}$) are:
$\sqrt{c}, \sqrt{c} \&-2 \sqrt{c}$ or $-\sqrt{c},-\sqrt{c} \& 2 \sqrt{c}$

If \sqrt{c} is a root, then $c \sqrt{c}-3 c(\sqrt{c})+d=0$, so that $d=2 c \sqrt{c}$, whilst if $-\sqrt{c}$ is a root, then $-c \sqrt{c}-3 c(-\sqrt{c})+d=0$, so that $d=-2 c \sqrt{c}$

