STEP 2018, P1, Q10 - Solution (3 pages; 14/5/20)
[The situation isn't that realistic, as there are no resistances for the engines. Obviously the driving forces can be considered to be net of resistances though.]
(i) Applying N2L to the leading engine:
$D-T=M a$, where a is the acceleration
Applying N2L to the whole of the train:
$2 D-n R=(2 M+n m) a$
Then $a=\frac{D-T}{M}=\frac{2 D-n R}{(2 M+n m)}$
$\Rightarrow(D-T)(2 M+n m)=M(2 D-n R)$
$\Rightarrow-T(2 M+n m)=2 M D-M n R-2 D M-D n m$
$\Rightarrow T=\frac{-M n R-D n m}{-(2 M+n m)}=\frac{n(m D+M R)}{n m+2 M}$, as required
(ii) [Note that the carriages are counted from the front of the train - which may be on the right, if a diagram is drawn.]

Referring to the diagram, let T_{k} be the tension to the left of the k th carriage, and T^{\prime} the tension to the left of the 2nd engine (the one not at the front).

Then, applying N2L to C_{1} :
$T-T_{1}-R=m a$, so that $T_{1}=T-R-m a<T$
Similarly, applying N2L to C_{2} :
$T_{1}-T_{2}-R=m a$, so that $T_{2}=T_{1}-R-m a<T_{1}$
So T is greater than $T_{1}, T_{2}, \ldots, T_{k}$
Also, applying N2L to C_{k+1} :
$T^{\prime}-T_{k+1}-R=m a$, so that $T_{k+1}=T^{\prime}-R-m a<T^{\prime}$
Similarly, applying N2L to C_{k+2} :
$T_{k+1}-T_{k+2}-R=m a$, so that $T_{k+2}=T_{k+1}-R-m a<T_{k+1}$
So T^{\prime} is greater than $T_{k+1}, T_{k+2}, \ldots, T_{n}$
Hence, T will be greater than all the other tensions if $T>T^{\prime}$.

Applying N2L to all the carriages behind $E_{2}\left(\right.$ ie $\left.C_{k+1}+\cdots+C_{n}\right)$:
$T^{\prime}-(n-k) R=(n-k) m a$
$\Rightarrow T^{\prime}=(n-k)\left\{R+m\left(\frac{2 D-n R}{2 M+n m}\right)\right\}$, from (1) in (i)
$=\frac{(n-k)}{(2 M+n m)}\{R(2 M+n m)+2 m D-m n R\}$
$=\frac{(n-k)}{(2 M+n m)}\{2 R M+2 m D\}$
From (i), $T=\frac{n(m D+M R)}{n m+2 M}$,
so that $T>T^{\prime}$ provided that $n>2(n-k)$;
ie $2 k>n$, or $k>\frac{n}{2}$
(iii) Applying N2L to $C_{n}: T_{n-1}-R=m a$,
so that $T_{n-1}=R+m a>0$
And ... $T_{k+2}<T_{k+1}<T^{\prime}$, from (ii).
Thus, all of the couplings to the left of E_{2} will be in tension.
Also, from (i), $T>T_{1}>T_{2}>\cdots>T_{k}$
So we need only consider T_{k} (if T_{k} isn't a compression, none of the others will be).

Applying N2L to $\left(C_{n}+\cdots+C_{k+1}+E_{2}\right)$:
$T_{k}+D-(n-k) R=[(n-k) m+M] a$,
so that $T_{k}=[(n-k) m+M] \frac{(2 D-n R)}{(2 M+n m)}-D+(n-k) R$
$=\frac{1}{(2 M+n m)}\{2(n-k) m D-(n-k) m n R+2 M D-M n R$
$+(n-k) R(2 M+n m)-D(2 M+n m)\}$

To show that $T_{k}<0$, consider the denominator:
$2(n-k) R M-D n m+2 n m D-2 k m D-M n R$
$=M n R-2 k R M+D n m-2 k m D$
$=M R(n-2 k)+\operatorname{Dm}(n-2 k)$
$=(M R+D m)(n-2 k)<0$, provided that $k>\frac{n}{2}$

